Declining bat populations and increasing demands on forest resources have prompted researchers to investigate tree roost selection of forest bats. Few studies, however, have investigated different spatial scales and landscape pattern as criteria for selection of tree roosts. In 1999 and 2000, we radiotracked 23 eastern red bats (Lasiurus borealis) to 64 day roosts. Using univariate and multivariate comparisons, we tested roost tree variables with random tree data at 3 circular spatial scales: roost tree, plot, and landscape. We found 15 variables that were entered in a stepwise discriminant analysis to best differentiate between the roost and random samples; 11 (73.3%) were landscape variables measured with a geographic information system. On average (x̄ ± SE), red bats roosted in deciduous trees (42.0 ± 2.1 cm dbh) that were located in plots with more (3.1 ± 0.1 m2) basal area, higher (84.0 ± 1.3) percentage of canopy closure, and lower (27.2 ± 2.2) percentage of groundcover than random plots. At the landscape scale (by percent magnitude), red bat buffers (1,000‐m‐radius circle) had significantly less development (81.6%), less feeding operations (70.4%), more deciduous (52.9%) and pine forest (63.8%), and fewer local roads (5.4%) but more trails (94.1%), open water (61.4%), wetland areas (80.4%), and stream areas (63.1%) than random buffers. Red bat roost trees were significantly closer (χ2 = 22.0088, df = 1, P < 0.001) to trails (106.2 ± 13.3 m) than to streams (279.4 ± 28.5 m). Our results suggest that red bats in our study area select roosts in mature riparian forests near trails, open water, and wetlands. The high percentage of landscape values in the discriminant analysis lends support to using landscape metrics as an investigative technique of resource selection. We recommend that managers consider landscape factors when protecting red bat day‐roost habitat.
The primary purposes for using fire are to enhance marsh vegetation to support waterfowl, and to manage invasive plant species. The study was conducted for two consecutive years in 2004 and 2005, investigating the effects of prescribed fire regimes on vegetation biomass in tidal brackish marsh areas of the Blackwater National Wildlife Refuge located on the eastern shore of Maryland, USA, that are under relatively similar environmental conditions. Four different burn regimes (i.e., annual burn, 3-5 year burn, 7-10 year burn, and no burn) were applied in the study. Above-and below-ground vegetation biomass samples as affected by the different burn regimes were harvested in each year for five plant species native to the marsh; Distichlis spicata, Spartina alterniflora, Schoenoplectus americanus, Spartina cynosuroides and Spartina patens. No significant difference was found either in total above-ground biomass or in above-ground biomass by species between burn regimes in 2004. However, more total above-ground biomass was produced in annual burn regime in 2005 than in the other burn regimes. There were no consistent effects of burning on vegetative biomass production by species, but it seemed D. spicata was somewhat benefited by prescribed burning for its biomass production. Moreover, the stem density for D. spicata under annual burn regime was significantly higher than that in the other burn regimes, showing some positive effects of burning on vegetation. The below-ground biomass was significantly greater in 2004 than in 2005, yet with no significant difference between burn regimes in either year. A longer-term monitoring is strongly recommended.Key words: below-ground biomass, marsh vegetation, prescribed fire, tidal brackish marsh, vegetation biomass INTRODUCTIONFire is a natural and important component of many ecosystems (Lynch 1941, Komarek 1974, Abrahamson 1984, Pyne 2003, Omi 2005. In ecosystems where fire occurs frequently plants have developed complex adaptations (Bond and Keeley 2005). Historically, fire has been used in wetland ecosystems to remove vegetation to facilitate seasonal hunting and trapping. In Gulf Coast marshes, fire was used to expose alligators (Alligator mississippiensis) by making their water holes more visible (O'Neil 1949). In East Coast marshes, fire was used to facilitate trapping by making muskrat (Ondatra zibethicus) lodges more visible to hunters (Lay 1945).Recently, prescribed fire has become an integral part of resource management in wetlands and is widely accepted as a technique to stimulate the growth of wetland vegetation (Kozlowski and Ahlgren 1974, Main and Barry 2002, Slocum et al. 2003, Bond and Keeley 2005. For example, prescribed fire can help maintain the required conditions for fire-adapted plants species, by promoting the flowering of herbaceous species and fruit production of some Ecol. Field Biol. 33(4): 351-361, 2010 woody species (Lynch 1941, Main andBarry 2002). Fire can improve nutritional quality of plants for both wild and domestic animals, reduce hazardou...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.