Schizophrenia is a chronic mental illness that leads the patient to hallucinations and delusions with a prevalence of 0.4% worldwide. The importance early detection of Schizophrenia is tracking the pre-syndrome of Schizophrenia during the active phase, and could reduce psychosis symptomatic. However, the method sometimes cannot detect the symptoms accurately. As an alternative, machine learning can be implemented on microarray data for early detection. This study aimed to implement three ensemble methods, i.e., Random Forest (RF), Adaptive Boosting (AdaBoost), and Extreme Gradient Boosting (XGBoost) to identify Schizophrenia. Hyperparameter tuning was performed to improve the performance of the models. Based on the results, we found that the model 6, which is developed by the XGBoost method, performs better than other models with the value of accuracy and F1-score are 0.87 and 0.87, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.