The structural stability, electronic structures, mechanical properties and Debye temperature of W-TM (TM = Cr, Cu, Fe, Mn, Mo and Ni, respectively) alloys have been investigated by first principles method. The lattice constant, cell volume, formation energy and cohesive energy of W-TM alloys are calculated. W-TM alloys still maintain bcc lattice, and have no structural phase transformation. It is shown that W-Mo and W-Mn alloys have better alloying ability with strong interactions between W and Mo/Mn atoms. However, the alloying ability of W-Cu, W-Fe, W-Cr and W-Ni is poor, and there is a weak chemical interaction between W and Cu/Cr/Fe/Ni atoms. Using the optimized lattice, the elastic constants are calculated, and the elastic moduli and other mechanical parameters are derived. Results show that the mechanical strength of W-TM alloys is lower than that of pure W, especially W-Cu and W-Ni alloys. However, the B/G ratio and Poisson’s ratio of W-TM alloys are higher than that of pure W, indicating that TM alloying can significantly improve the ductility of pure W. The metallicity of pure W can be enhanced by doping Fe or Mn, while doping Cr, Cu, Mo and Ni reduces the metallicity of pure W, of which W-Cu alloy has worst metallicity.
Two schemes, introducing the projective operator and the auxiliary qubit respectively, for controlled dense coding are investigated by using a three-qubit symmetric state with entanglement, where the supervisor (Cliff) can control an average amount of information transmitted from the sender (Alice) to the receiver (Bob) by adjusting the measurement angle θ . We show that the results for the average amounts of information are unique from the different two schemes. The schemes may be extended to many-qubit systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.