The effects of various polymers on the release of diclofenac sodium from their matrices have been evaluated. In vitro release profiles of diclofenac sodium from ethylcellulose and hydroxypropylmethylcellulose (HPMC) K4M matrices showed that decreasing the concentration of ethylcellulose and increasing the concentration of HPMC K4M resulted in an increase in the release rate of diclofenac sodium. An increase in the amount of lactose in matrix resulted in an increase in the release rate of diclofenac sodium. It is suggested that the use of ethylcellulose or Precirol containing relatively large percentage concentrations of lactose in matrices will not provide zero-order release of diclofenac sodium from matrices. The best-$t release kinetics with the highest correlation coeficients was achieved with the Higuchi's plot followed by the zero-order. A straight line relationship was established bemeen the T50% and the ratio of HPMC K4M to diclofenac sodium.
Aspirin ethylcellulose microcapsules were tableted by compression with or without excipients (lactose or polyvinylpyrrolidone [PVP]). The effects of the amount of the excipients and microcapsule size on the crushing strength and release rate of aspirin from tableted microcapsules were investigated. Tablets without excipients had a crushing strength that was independent of the applied pressure and microcapsule size. An increase in compression pressure from 15 to 60 MPa resulted in an increase in the crushing strength of tablets containing 20% or 40% w/w lactose, but the reverse results were obtained for the tableted microcapsules containing 20% or 40% w/w PVP. Results showed that the release rate of aspirin from microcapsules containing lactose or PVP was independent of the compression pressure with the exception of tablets containing 40% w/w lactose. In vitro release profiles of aspirin from tableted microcapsules containing lactose or PVP showed that increasing the concentration of the excipients resulted in an increase in the release rate of aspirin. Values of n were changed by the compression pressure and the added excipients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.