The objective of this study was to examine the interplay between matrix stiffness and hydrostatic pressure (HP) in regulating chondrogenesis of mesenchymal stem cells (MSCs) and to further elucidate the mechanotransductive roles of integrins and the cytoskeleton. MSCs were seeded into 1 %, 2 % or 4 % agarose hydrogels and exposed to cyclic hydrostatic pressure. In a permissive media, the stiffer hydrogels supported an osteogenic phenotype, with little evidence of chondrogenesis observed regardless of the matrix stiffness. In a chondrogenic media, the stiffer gels suppressed cartilage matrix production and gene expression, with the addition of RGDS (an integrin blocker) found to return matrix synthesis to similar levels as in the softer gels. Vinculin, actin and vimentin organisation all adapted within stiffer hydrogels, with the addition of RGDS again preventing these changes. While the stiffer gels inhibited chondrogenesis, they enhanced mechanotransduction of HP. RGDS suppressed the mechanotransduction of HP, suggesting a role for integrin binding as a regulator of both matrix stiffness and HP. Intermediate filaments also appear to play a role in the mechanotransduction of HP, as only vimentin organisation adapted in response to this mechanical stimulus. To conclude, the results of this study demonstrate that matrix density and/or stiffness modulates the development of the pericellular matrix and consequently integrin binding and cytoskeletal structure. The study further suggests that physiological cues such as HP enhance chondrogenesis of MSCs as the pericellular environment matures and the cytoskeleton adapts, and points to a novel role for vimentin in the transduction of HP.
The objective of this study was to elucidate the role of calcium (Ca ++) signalling in the chondrogenic response of mesenchymal stem cells (MSCs) to hydrostatic pressure (HP). MSCs were seeded into agarose hydrogels, subjected to HP or kept in free swelling conditions, and cultured either with or without pharmacological inhibitors of Ca ++ mobility and downstream targets. Chelating free Ca ++ , inhibiting voltage-gated calcium channels, and depleting intracellular calcium stores suppressed the beneficial effect of HP on chondrogenesis, indicating that Ca ++ mobility may play an important role in the mechanotransduction of HP. However, inhibition of stretch-activated calcium channels in the current experiment yielded similar results to the control group, suggesting that mechanotransduction of HP is distinct from loads that generate cell deformations. Inhibition of the downstream targets calmodulin, calmodulin kinase II, and calcineurin all knocked down the effect of HP on chondrogenesis, implicating these targets in MSCs response to HP. All of the pharmacological inhibitors that abolished the chondrogenic response to HP also maintained a punctate vimentin organisation in the presence of HP, as opposed to the mechanoresponsive groups where the vimentin structure became more diffuse. These results suggest that Ca ++ signalling may transduce HP via vimentin adaptation to loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.