In this paper, an efficient and reliable neural active power filter (APF) to estimate and compensate for harmonic distortions from an AC line is proposed. The proposed filter is completely based on Adaline neural networks which are organized in different independent blocks. We introduce a neural method based on Adalines for the online extraction of the voltage components to recover a balanced and equilibrated voltage system, and three different methods for harmonic filtering. These three methods efficiently separate the fundamental harmonic from the distortion harmonics of the measured currents. According to either the Instantaneous Power Theory or to the Fourier series analysis of the currents, each of these methods are based on a specific decomposition. The original decomposition of the currents or of the powers then allows defining the architecture and the inputs of Adaline neural networks. Different learning schemes are then used to control the inverter to inject elaborated reference currents in the power system. Results obtained by simulation and their real-time validation in experiments are presented to compare the compensation methods. By their learning capabilities, artificial neural networks are able to take into account time-varying parameters, and thus appreciably improve the performance of traditional compensating methods. The effectiveness of the algorithms is demonstrated in their application to harmonics compensation in power systems.Index Terms-Active power filter (APF), adaptive control, artificial neural networks (ANNs), harmonics, selective compensation, three-phase electric system.
Abstract-This paper presents an original method, based on artificial neural networks, to reduce the torque ripple in a permanent-magnet non-sinusoidal synchronous motor. Solutions for calculating optimal currents are deduced from geometrical considerations and without a calculation step which is generally based on the Lagrange optimization. These optimal currents are obtained from two hyperplanes. The study takes into account the presence of harmonics in the back-EMF and the cogging torque. New control schemes are thus proposed to derive the optimal stator currents giving exactly the desired electromagnetic torque (or speed) and minimizing the ohmic losses. Either the torque or the speed control scheme, both integrate two neural blocks, one dedicated for optimal currents calculation and the other to ensure the generation of these currents via a voltage source inverter. Simulation and experimental results from a laboratory prototype are shown to confirm the validity of the proposed neural approach.
This paper presents a novel method for QRS detection in electrocardiograms (ECG). It is based on the S-Transform, a new time frequency representation (TFR). The S-Transform provides frequency-dependent resolution while maintaining a direct relationship with the Fourier spectrum. We exploit the advantages of the S-Transform to isolate the QRS complexes in the time-frequency domain. Shannon energy of each obtained local spectrum is then computed in order to localize the R waves in the time domain. Significant performance enhancement is confirmed when the proposed approach is tested with the MIT-BIH arrhythmia database (MITDB). The obtained results show a sensitivity of 99.84%, a positive predictivity of 99.91% and an error rate of 0.25%. Furthermore, to be more convincing, the authors illustrated the detection parameters in the case of certain ECG segments with complicated patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.