Tubulin self‐assembly into microtubules is a fascinating natural phenomenon. Its importance is not just crucial for functional and structural biological processes, but it also serves as an inspiration for synthetic nanomaterial innovations. The modulation of the tubulin self‐assembly process without introducing additional chemical inhibitors/promoters or stabilizers has remained an elusive process. This work reports a versatile and vigorous strategy for controlling tubulin self‐assembly by nanosecond electropulses (nsEPs). The polymerization assessed by turbidimetry is dependent on nsEPs dosage. The kinetics of microtubules formation is tightly linked to the nsEPs effects on structural properties of tubulin, and tubulin‐solvent interface, assessed by autofluorescence, and the zeta potential. Moreover, the overall size of tubulin assessed by dynamic light scattering is affected as well. Additionally, atomic force microscopy imaging reveals the formation of different assemblies reflecting applied nsEPs. It is suggested that changes in C‐terminal modification states alter tubulin polymerization‐competent conformations. Although the assembled tubulin preserve their integral structure, they might exhibit a broad range of new properties important for their functions. Thus, these transient conformation changes of tubulin and their collective properties can result in new applications.
Remodeling of nanoscopic structures is not just crucial for cell biology, but it is also at the core of bioinspired materials. While the microtubule cytoskeleton in cells undergoes fast adaptation, adaptive materials still face this remodeling challenge. Moreover, the guided reorganization of the microtubule network and the correction of its abnormalities is still a major aim. This work reports new findings for externally triggered microtubule network remodeling by nanosecond electropulses (nsEPs). At first, a wide range of nsEP parameters, applied in a low conductivity buffer, is explored to find out the minimal nsEP dosage needed to disturb microtubules in various cell types. The time course of apoptosis and microtubule recovery in the culture medium is thereafter assessed. Application of nsEPs to cells in culture media result in modulation of microtubule binding properties to end‐binding (EB1) protein, quantified by newly developed image processing techniques. The microtubules in nsEP‐treated cells in the culture medium have longer EB1 comets but their density is lower than that of the control. The nsEP treatment represents a strategy for microtubule remodeling‐based nano‐biotechnological applications, such as engineering of self‐healing materials, and as a manipulation tool for the evaluation of microtubule remodeling mechanisms during various biological processes in health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.