Background Single nucleotide polymorphisms occurring in the Plasmodium falciparum multidrug resistant gene 1 (pfmdr1) are known to be associated with aminoquinoline resistance and, therefore, represent key P. falciparum markers for monitoring resistance both in susceptible groups (children under 5 years old and pregnant women) and in the general population. This study aimed to determine prevalence and factors associated with the carriage of pfmdr1 N86Y, Y184F and D1246Y polymorphisms among pregnant women in a setting of high malaria transmission in Burkina Faso. Methods Plasmodium falciparum isolates were collected at the first antenatal care visit (ANC-1) as well as at delivery from pregnant women participating in the COSMIC trial (NTC01941264), which assessed malaria preventive interventions during pregnancy in the Nanoro Health District. Here, pregnant women received intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) and malaria infections and/or diseases were treated using artemether-lumefantrine (AL) during the trial. Parasite DNA was extracted from dried blood spots and the presence of pfmdr1 mutations at positions 86, 184 and 1246 was determined using nested PCR, followed by restriction fragment length polymorphism (RFLP) analysis. Results A prevalence of 13.2% (20/151) and 12.1% (14/116) of the pfmdr1 86Y mutant allele was found at ANC-1 and at delivery, respectively, while no mutant allele was observed for Y184F and D1246Y codons at both ANC-1 and at delivery. There were no significant factors associated with pfmdr1 86Y mutant allele carriage at ANC-1. However, malaria infections at delivery with a parasite density above the median (2237.2 (IQR: 613.5–11,425.7) parasites/µl) was associated with an increase risk of pfmdr1 86Y mutant allele carriage (AOR = 5.5 (95% CI 1.07–28.0); P = 0.04). In contrast, both three or more IPTp-SP doses (AOR = 0.25 (95% CI 0.07–0.92); P = 0.04) and one or more AL treatment (AOR = 0.25 (95% CI 0.07–0.89); P = 0.03) during pregnancy were associated with a significant reduce risk of pfmdr1 86Y mutant allele carriage at delivery. Conclusion These findings suggest that both high coverage of IPTp-SP and the use of AL for the treatment of malaria infection/disease during pregnancy select for pfmdr1 N86 wild-type allele at delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.