Recently ehealth technologies are becoming an overwhelming aspect of public health services that provides seamless access to healthcare information. Machine learning tools associated with IoT technology play an important role in developing such health technologies. This paper proposes a decision support system-based system (DSS) to make diagnosis of cardiovascular diseases. It uses deep learning approaches that classify electrocardiogram (ECG) signals. Thus, a two-stage long-short term memory (LSTM) based neural network architecture, along with an adequate preprocessing of the ECG signals is designed as a diagnosis-aided system for cardiac arrhythmia detection based on an ECG signal analysis. This deep learning based cardio-vascular disease diagnosis system (namely ‘DLCVD’) is built to meet higher performance requirements in terms of accuracy, specificity, and sensitivity. This must also be capable of an online real-time classification. Experimental results using the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database show that DLCVD led to outstanding performance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.