Aims: This study aimed to study biotic iron dissolution using a new hybrid material constituted of well-dispersed mineral colloids in a silica gel matrix. This permitted to prevent adsorption of colloidal mineral particles on bacteria. Hybrid silica gel (HSG) permitted to study bioweathering mechanisms by diffusing molecules. Methods and Results: Hybrid silica gel was synthesized through a classical sol-gel procedure in which mineral colloidal particles (NAu-2) were embedded in a porous silica matrix. Rahnella aquatilis RA1, isolated from a wheat rhizosphere was chosen for its ability to dissolve minerals by producing various organic acids and siderophores. Pyruvic, acetic and lactic acids were the major organic acids produced by R. aquatilis RA1 followed by oxalic and citric acids at the end of incubation. Comparison of abiotic and biotic experiments revealed a high efficiency of R. aquatilis RA1 for iron dissolution suggesting an optimized action of different ligands that solubilized or mobilized iron. Conclusions: Hybrid silica gel allowed focusing on the colloidal mineral weathering by metabolites diffusion without mineral adsorption on bacteria. Significance and Impact of the Study: Hybrid silica gels are new and efficient tools to study colloidal mineral bioweathering. Adjusting HSG porosity and hydrophobicity should permit to precise the influence of limiting diffusion of siderophores or aliphatic organic acids on mineral weathering.
To simulate iron consumption in soils, iron leaching from silicate minerals due to three heterotrophic bacterial strains and a chemical treatment was studied using hybrid silica gel (HSG) doped with two phyllosilicates, nontronite (NAu-2) or low-iron-content montmorillonite (SWy-2). HSG methodology, a novel way of separating bacteria cells from a colloidal mineral source, consisted in embedding colloidal mineral particles into an amorphous porous silica matrix using a classical sol-gel procedure. Pantoae agglomerans PA1 and Rahnella aquatilis RA1 were isolated from silicate-rich soils, that is, beech and wheat rhizospheres (Vosges, France); Burkholderia sp. G5 was selected from acidic and nutrient-poor podzol soils (Vosges, France). Fe release from clay minerals and production of bacterial metabolites, that is, low molecular weight organic acids (LMWOA) and siderophores, were monitored. Two LMWOA profiles were observed with major gluconate production (> 9000 μM) for Burkholderia sp. G5 and moderate production of lactate, acetate, propionate, formate, oxalate, citrate, and succinate (< 300 μM) for R. aquatilis RA1 and P. agglomerans PA1. HSG demonstrated its usefulness in revealing clay mineral-microorganisms interactions. The effect of bacterial exsudates was clearly separated from physical contact effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.