Station-keeping using mooring lines is an important part of the design of floating offshore platforms, and has been used on most types of floating platforms, such as Spar, Semi-submersible, and FPSO. It is of great interest to monitor the integrity of the mooring lines to detect any damaged and/or failures. This paper presents a method to train an Artificial Neural Network (ANN) model for damage detection of mooring lines based on a patented methodology that uses detection of subtle shifts in the long drift period of a moored floating vessel as an indicator of mooring line failure, using only GPS monitoring. In case of an FPSO, the total mass or weight of the vessel is also used as a variable. The training of the ANN model employs a back-propagation learning algorithm and an automatic method for determination of ANN architecture. The input variables of the ANN model can be derived from the monitored motion of the platform by GPS (plus vessel’s total mass in case of an FPSO), and the output of the model is the identification of a specific damaged mooring line. The training and testing of the ANN model use the results of numerical analyses for a semi-submersible offshore platform with twenty mooring lines for a range of metocean conditions. The training data cover the cases of intact mooring lines and a damaged line for two selected adjacent lines. As an illustration, the evolution of the model at various training stages is presented in terms of its accuracy to detect and identify a damaged mooring line. After successful training, the trained model can detect with great fidelity and speed the damaged mooring line. In addition, it can detect accurately the damaged mooring line for sea states that are not included in the training. This demonstrates that the model can recognize and classify patterns associated with a damaged mooring line and separate them from patterns of intact mooring lines for sea states that are and are not included in the training. This study demonstrates a great potential for the use of a more general and comprehensive ANN model to help monitor the station keeping integrity of a floating offshore platform and the dynamic behavior of floating systems in order to forecast problems before they occur by detecting deviations in historical patterns.
Station-keeping is one of the important factors in the design of offshore platforms. Some offshore platforms, such as Spar, Semi-submersible and FPSO, use mooring lines as a mean for station-keeping. Tensions in the mooring lines are one of the key factors in station-keeping. The design of an offshore platform and its mooring lines is based on computed motions of the platform and associated mooring line tensions from numerical simulations using a software code on the basis of metocean criteria. This paper presents an Artificial Neural Network (ANN) model for the prediction of mooring line tensions based on the motions of the platform. This ANN model is trained with time histories of vessel motions and corresponding mooring line tensions for a range of sea states from the results of numerical simulations. After the model is trained, it can reproduce with great fidelity and very fast the mooring line tensions. In addition, it can generate accurate mooring line tensions for sea states that were not included in the training, and this demonstrates that the model has captured the knowledge for the underlying physics between vessel motions and mooring line tensions. The paper presents an example of the training and the validation of the model for a semi-submersible offshore platform for a range of sea states. The training of the ANN model employed a back-propagation learning algorithm. In this algorithm the computed output error is back-propagated through the neural network to modify the connection weights between neurons. The training started with a small number of hidden neurons, and the model grew adaptively by adding hidden neurons until either the target output convergence is achieved or a maximum number of additional hidden neurons is reached. The ANN model discovers nonlinear relationships between the input and output variables during training. The paper presents comparison of time series of mooring line tensions for sea states that were and were not included in the training between those from the numerical simulations and those computed by the trained ANN model. Fatigue assessment is also used to quantitatively measure the accuracy of the ANN model prediction of the time series of mooring line tensions. The paper presents the results of fatigue assessment using various stages of the ANN models with different number of hidden neurons. This shows that the additional hidden neurons improve the prediction of the ANN model of the mooring line tensions for sea states that were and were not included in the training. This approach of prediction of mooring line tensions based on vessel motions using ANN model paves the way to the development of an ANN-based monitoring system. Also, this ANN study demonstrates a great potential for the use of a more general and comprehensive ANN model to help monitor the dynamic behavior of floating systems and forecast problems before they occur by detecting deviations in historic patterns.
As exploration and production move to even deeper water and more severe environment, the need to have a methodology for analyzing risers for in-line VIV fatigue damage without undue conservatism increases. The methodology presented in this paper reduces the conservatism in available methods by accounting for (1) the power-in region, (2) the power-out region (hydrodynamic damping), (3) competing modal excitation in the case of multiple mode excitation, and (4) the multiple constraints, if available, in the riser that result in irregular modal shapes. This methodology requires the use of a cross-flow VIV code with sheared flow capability such as SHEAR7, VIVA, or VIVANA. In this methodology the riser over the current profile is split into sections of cross-flow excitation and sections that have potential for in-line VIV excitation only. The cross-flow VIV code defines the sections for cross-flow excitation. All sections are analyzed for in-line VIV with the cross-flow VIV code using the appropriate in-line VIV force coefficients and Strouhal numbers. The assumptions implicit in the cross-flow VIV code regarding power-in, power-out, etc., are assumed valid for the in-line VIV analysis. The in-line VIV coefficients used in the analysis reported in this paper have been obtained from laboratory data, and are functions of both the VIV response amplitude and reduced velocity. The coefficients have been modified to give in-line VIV response amplitudes with the methodology presented that are consistent with DNV-RP-F105. The fatigue damage along the riser represents the sum of the damages produced by in-line VIV excitation for each of the riser sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.