: HRV measures obtained with the Polar S810 and accompanying software have no appreciable bias or additional random error in comparison with criterion measures, but the measures are inherently unreliable over a 1-wk interval. Reliability of HRV from longer (e.g., 10 min) and/or consecutive 5-min RR recordings needs to be investigated with the Polar and criterion instruments.
All exercise modalities improve EF significantly and there was a significant, positive relationship between aerobic exercise intensity and EF. Greater frequency, rather than intensity, of resistance exercise training enhanced EF.
Aims/hypothesisCardiac disease remains the leading cause of mortality in type 2 diabetes, yet few strategies to target cardiac dysfunction have been developed. This randomised controlled trial aimed to investigate high intensity intermittent training (HIIT) as a potential therapy to improve cardiac structure and function in type 2 diabetes. The impact of HIIT on liver fat and metabolic control was also investigated.MethodsUsing an online random allocation sequence, 28 patients with type 2 diabetes (metformin and diet controlled) were randomised to 12 weeks of HIIT (n = 14) or standard care (n = 14). Cardiac structure and function were measured by 3.0 T MRI and tagging. Liver fat was determined by 1H-magnetic resonance spectroscopy and glucose control by an OGTT. MRI analysis was performed by an observer blinded to group allocation. All study procedures took place in Newcastle upon Tyne, UK.ResultsFive patients did not complete the study and were therefore excluded from analysis: this left 12 HIIT and 11 control patients for the intention-to-treat analysis. Compared with controls, HIIT improved cardiac structure (left ventricular wall mass 104 ± 17 g to 116 ± 20 g vs 107 ± 25 g to 105 ± 25 g, p < 0.05) and systolic function (stroke volume 76 ± 16 ml to 87 ± 19 ml vs 79 ± 14 ml to 75 ± 15 ml, p < 0.01). Early diastolic filling rates increased (241 ± 84 ml/s to 299 ± 89 ml/s vs 250 ± 44 ml/s to 251 ± 47 ml/s, p < 0.05) and peak torsion decreased (8.1 ± 1.8° to 6.9 ± 1.6° vs 7.1 ± 2.2° to 7.6 ± 1.9°, p < 0.05) in the treatment group. Following HIIT, there was a 39% relative reduction in liver fat (p < 0.05) and a reduction in HbA1c (7.1 ± 1.0% [54.5 mmol/mol] to 6.8 ± 0.9% [51.3 mmol/mol] vs 7.2 ± 0.5% [54.9 mmol/mol] to 7.4 ± 0.7% [57.0 mmol/mol], p < 0.05). Changes in liver fat correlated with changes in HbA1c (r = 0.70, p < 0.000) and 2 h glucose (r = 0.57, p < 0.004). No adverse events were recorded.Conclusions/interpretationThis is the first study to demonstrate improvements in cardiac structure and function, along with the greatest reduction in liver fat, to be recorded following an exercise intervention in type 2 diabetes. HIIT should be considered by clinical care teams as a therapy to improve cardiometabolic risk in patients with type 2 diabetes.Trial registration:www.isrctn.com 78698481Funding:Medical Research Council.
Exercise therapy improves short-term metabolic, brain, physical, and cognitive function, without changes in glucose control following stroke. The long-term impact of exercise on stroke recurrence, cardiovascular health, and disability should now be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.