An important goal in reinforcement learning is to create agents that can quickly adapt to new goals while avoiding situations that might cause damage to themselves or their environments. One way agents learn is through exploration mechanisms, which are needed to discover new policies. However, in deep reinforcement learning, exploration is normally done by injecting noise in the action space. While performing well in many domains, this setup has the inherent risk that the noisy actions performed by the agent lead to unsafe states in the environment. Here we introduce a novel approach called Meta-Learned Instinctual Networks (MLIN) that allows agents to safely learn during their lifetime while avoiding potentially hazardous states. At the core of the approach is a plastic network trained through reinforcement learning and an evolved "instinctual" network, which does not change during the agent's lifetime but can modulate the noisy output of the plastic network. We test our idea on a simple 2D navigation task with no-go zones, in which the agent has to learn to approach new targets during deployment. MLIN outperforms standard meta-trained networks and allows agents to learn to navigate to new targets without colliding with any of the no-go zones. These results suggest that meta-learning augmented with an instinctual network is a promising new approach for RL in safety-critical domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.