This paper presents an approach for adjusting Felder-Silverman learning styles model for application in development of adaptive e-learning systems. Main goal of the paper is to improve the existing e-learning courses by developing a method for adaptation based on learning styles. The proposed method includes analysis of data related to students characteristics and applying the concept of personalization in creating e-learning courses. The research has been conducted at Faculty of organizational sciences, University of Belgrade, during winter semester of 2009/10, on sample of 318 students. The students from the experimental group were divided in three clusters, based on data about their styles identified using adjusted Felder-Silverman questionnaire. Data about learning styles collected during the research were used to determine typical groups of students and then to classify students into these groups. The classification was performed using data mining techniques. Adaptation of the e-learning courses was implemented according to results of data analysis. Evaluation showed that there was statistically significant difference in the results of students who attended the course adapted by using the described method, in comparison with results of students who attended course that was not adapted
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.