Our study demonstrated that automated scoring of sleep obtained from a single-channel of forehead EEG results in agreement to majority manual scoring are similar to results obtained from studies of manual interrater agreement. The benefit in assessing auto-staging accuracy with consensus agreement across multiple raters is most apparent in patients with OSA; additionally, assessing auto-staging accuracy limited disagreements in patients on medications and in those with compromised signal quality.
A great deal of research over the last century has focused on drowsiness/alertness detection, as fatigue-related physical and cognitive impairments pose a serious risk to public health and safety. Available drowsiness/alertness detection solutions are unsatisfactory for a number of reasons: 1) lack of generalizability, 2) failure to address individual variability in generalized models, and/or 3) they lack a portable, un-tethered application. The current study aimed to address these issues, and determine if an individualized electroencephalography (EEG) based algorithm could be defined to track performance decrements associated with sleep loss, as this is the first step in developing a field deployable drowsiness/alertness detection system. The results indicated that an EEG-based algorithm, individualized using a series of brief "identification" tasks, was able to effectively track performance decrements associated with sleep deprivation. Future development will address the need for the algorithm to predict performance decrements due to sleep loss, and provide field applicability.
The neck position therapy device is accurate and effective in restricting supine sleep, improving AHI, sleep architecture and continuity, and monitoring treatment outcomes.
Background: When conducting a treatment intervention, it is assumed that variability associated with measurement of the disease can be controlled sufficiently to reasonably assess the outcome. In this study we investigate the variability of Apnea-Hypopnea Index obtained by polysomnography and by in-home portable recording in untreated mild to moderate obstructive sleep apnea (OSA) patients at a four-to sixmonth interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.