Atherosclerosis is a life-long illness that begins with risk factors, which in turn contribute to the development of subclinical disease, followed by the establishment of overt cardiovascular disease (CVD). Thrombotic-occlusive complications of atherosclerosis are among the most widespread and costly health problems. Oxidized low-density lipoprotein (OxLDL) plays an important role in atherogenesis by promoting an inflammatory environment and lipid deposition in the arterial wall. As cardiovascular events occur in individuals without common risk factors, there is a need for additional tools that may help in CVD risk assessment and management. The use of biomarkers has improved diagnostic, therapeutic and prognostic outcome in cardiovascular medicine. This review elaborates on the value of circulating OxLDL as a biomarker of CVD. Three enzyme-linked immunosorbent assays (4E6, DLH3 and E06) using murine monoclonal antibodies for determination of OxLDL blood levels have been developed. However, none of these assays are currently approved for routine clinical practice. We identified studies investigating OxLDL in CVD (measured by 4E6, DLH3 or E06 assay) by searching the PubMed database. Circulating OxLDL was found to be associated with all stages of atherosclerosis, from early atherogenesis to hypertension, coronary and peripheral arterial disease, acute coronary syndromes and ischemic cerebral infarction. The results of studies investigating the usefulness of OxLDL for CVD prediction were also summarized. Furthermore, OxLDL was found to be associated with pathologic conditions linked to CVD, including diabetes mellitus, obesity and metabolic syndrome (MetS). In addition, we have addressed the mechanisms by which OxLDL promotes atherogenesis, and the effects of antiatherogenic treatments on circulating OxLDL. Finally, we highlight the evidence suggesting that lipoprotein (a) [Lp(a)] is the preferential carrier of oxidized phospholipids (OxPL) in human plasma. A strong association between OxPL/apoB level (representing the content of OxPL on apolipoprotein B-100 particles, measured by E06 assay) and Lp(a) has been determined.
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF.
More people die from cardiovascular diseases (CVD) than from any other cause. Cardiovascular complications are thought to arise from enhanced levels of free radicals causing impaired “redox homeostasis,” which represents the interplay between oxidative stress (OS) and reductive stress (RS). In this review, we compile several experimental research findings that show sustained shifts towards OS will alter the homeostatic redox mechanism to cause cardiovascular complications, as well as findings that show a prolonged antioxidant state or RS can similarly lead to such cardiovascular complications. This experimental evidence is specifically focused on the role of glutathione, the most abundant antioxidant in the heart, in a redox homeostatic mechanism that has been shifted towards OS or RS. This may lead to impairment of cellular signaling mechanisms and elevated pools of proteotoxicity associated with cardiac dysfunction.
The pathogenesis of acute brain ischemia (ABI) is highly complex and involves multiple mechanisms including free radical generation. Imbalance between the cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. Oxidative stress is one of the mechanisms contributing to neuronal damage, potentially induced through the ABI. Through interactions with a large number of molecules, reactive oxygen species may irreversibly destroy or alter the function of the cellular lipids, proteins, and nucleic acids and initiate cell signaling pathways after cerebral ischemia. Future investigations should focus on the understanding of oxidative stress mechanisms and neuroprotection in order to discover new treatment targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.