We report the experimental observation of extreme instabilities in a self-pulsing fiber laser under the influence of stimulated Brillouin scattering (SBS). Specifically, we observe temporally localized structures with high intensities that can be referred to as rogue events through their statistical behaviour with highly-skewed intensity distributions. The emergence of these SBS-induced rogue waves is attributed to the interplay between laser operation and resonant Stokes orders. As this behaviour is not accounted for by existing models, we also present numerical simulations showing that such instabilities can be observed in chaotic laser operation. This study opens up new possibilities towards harnessing extreme events in highly-dissipative systems through adapted laser cavity configurations.
The effect of Brillouin backscattering on the stability of a high power continuously pumped fiber laser is theoretically analyzed in the general framework of two-coupled modes laser model. It is demonstrated that, depending on the cavity losses, different type of instabilities can arise. Low loss cavity favours stable continuous regime in a large range of pumping rates while high loss configuration permits the emergence of different self-pulsing instabilities.
We investigate numerically different types of instabilities in a high loss Fabry-Perot laser cavity in presence of the stimulated Brillouin scattering. Our results reveal many interesting dynamical behaviors such as periodic, quasi-periodic and chaotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.