The Report presents a comprehensive summary of the extensive studies conducted on fly ash-based geopolymer concrete. Test data are used to identify the effects of salient factors that influence the properties of the geopolymer concrete in the fresh and hardened states. These results are utilized to propose a simple method for the design of geopolymer concrete mixtures. Test data of various shortterm and long-term properties of the geopolymer concrete are then presented. The last part of the Report describes the results of the tests conducted on large-scale reinforced geopolymer concrete members and illustrates the application of the geopolymer concrete in the construction industry. The economic merits of the geopolymer concrete are also mentioned.
Geopolymer is a novel binding material produced from the reaction of fly ash with an alkaline solution. In Geopolymer mortar, Portland cement is not utilized at all. In this research, the influence of various parameters on the short term engineering properties of fresh and hardened low-calcium fly ash-based Geopolymer mortar were studied. Tests were carried out on 50 x 50 x 50mm cube Geopolymer mortar specimens. The test results revealed that as the concentration of alkaline activator increases, the compressive strength of Geopolymer mortar also increases. Specimens cured at temperature of 65 o C for 1 day showed the highest 28 days compressive strength. The mass ratio of activator/fly ash of 0.4 produced the highest 28 days compressive strength for the specimen. The obtained compressive strength was in the range of 1.6MPa -20MPa.
Abstract. There are more than four decades since the last 1970s where geopolymers concrete was first introduced and developed to use as a replacement to conventional concrete material which uses cement as a binder. And since the last two decades, geopolymers which utilized fly ash as aluminosilicate source material, i.e. fly ash based geopolymers, have been investigated. Many researchers present how to produce the best fly ash based geopolymer with a various source of constituent material as well as mixing formula to achieve exceptional concrete performance. Although there is a similar trend towards factors affecting the result of fly ash based geopolymer synthesis, there is still remain a wide range in mixture proportion. The considerable variation in fly ash characteristics as source material in the synthesis can very likely be one of the causes of this problem. This paper attempts to identify the effect of source material variation of geopolymer concrete, particularly which use fly ash as source material and focuses on the variation of its characteristics and the effects to properties of concrete. From the reviews it concluded that different sources (and even the same source, but different batch) of fly ash materials will give some different characteristics of the fly ash, where it would affect the synthesis process of the fly ash based geopolymer concretes.
To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. This paper presents the development of fly ash-based geopolymer concrete. In geopolymer concrete, a by-product material rich in silicon and aluminum, such as low-calcium (ASTM C 618 Class F) fly ash, is chemically activated by a high-alkaline solution to form a paste that binds the loose coarse and fine aggregates, and other unreacted materials in the mixture. The test results presented in this paper show the effects of various parameters on the properties of geopolymer concrete. The application of geopolymer concrete and future research needs are also identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.