The B-cell antigen CD20 is expressed on normal B cells and by nearly all B-cell lymphomas. This nonmodulating antigen provides an excellent target for antibody-directed therapies. A chimeric anti-CD20 antibody (IDEC-C2B8), consisting of human IgG1-kappa constant regions and variable regions from the murine monoclonal anti-CD20 antibody IDEC- 2B8, has been produced for clinical trials. It lyses CD20+ cells in vitro via complement and antibody-dependent cell-mediated lysis. Preclinical studies have shown that the chimeric antibody selectively depletes B cells in blood and lymph nodes in macaque monkeys. In this phase I clinical trial, 15 patients (3 per dose level) with relapsed low-grade B-cell lymphoma were treated with a single dose (10, 50, 100, 250, or 500 mg/m2) of antibody administered intravenously. Treatment- related symptoms correlated with the number of circulating CD20 cells and grade II events consisted of fever (5 patients); nausea (2), rigor (2), orthostatic hypotension (2), bronchospasm (1), and thrombocytopenia (1). No significant toxicities were observed during the 3 months of follow-up. Serum C3, IgG, and IgM levels, neutrophils, and T cells were largely unchanged. At the three higher dose levels, pharmacokinetics of the free antibody showed a serum half-life of 4.4 days (range, 1.6 to 10.5). Levels greater than 10 micrograms/mL persisted in 6 of 9 patients for more than 14 days. No quantifiable immune responses to the infused antibody have been detected. CD20+ B cells were rapidly and specifically depleted in the peripheral blood at 24 to 72 hours and remained depleted for at least 2 to 3 months in most patients. Two-week postinfusion tumor biopsies showed the chimeric antibody bound to tumor cells and a decrease in the percentage of B cells. Tumor regressions occurred in 6 of 15 patients (2 partial and 4 minor responses). The results of this single-dose trial have been used to design a multiple-dose phase I/II study.
The B-cell antigen CD20 is expressed on normal B cells and by nearly all B-cell lymphomas. This nonmodulating antigen provides an excellent target for antibody-directed therapies. A chimeric anti-CD20 antibody (IDEC-C2B8), consisting of human IgG1-kappa constant regions and variable regions from the murine monoclonal anti-CD20 antibody IDEC- 2B8, has been produced for clinical trials. It lyses CD20+ cells in vitro via complement and antibody-dependent cell-mediated lysis. Preclinical studies have shown that the chimeric antibody selectively depletes B cells in blood and lymph nodes in macaque monkeys. In this phase I clinical trial, 15 patients (3 per dose level) with relapsed low-grade B-cell lymphoma were treated with a single dose (10, 50, 100, 250, or 500 mg/m2) of antibody administered intravenously. Treatment- related symptoms correlated with the number of circulating CD20 cells and grade II events consisted of fever (5 patients); nausea (2), rigor (2), orthostatic hypotension (2), bronchospasm (1), and thrombocytopenia (1). No significant toxicities were observed during the 3 months of follow-up. Serum C3, IgG, and IgM levels, neutrophils, and T cells were largely unchanged. At the three higher dose levels, pharmacokinetics of the free antibody showed a serum half-life of 4.4 days (range, 1.6 to 10.5). Levels greater than 10 micrograms/mL persisted in 6 of 9 patients for more than 14 days. No quantifiable immune responses to the infused antibody have been detected. CD20+ B cells were rapidly and specifically depleted in the peripheral blood at 24 to 72 hours and remained depleted for at least 2 to 3 months in most patients. Two-week postinfusion tumor biopsies showed the chimeric antibody bound to tumor cells and a decrease in the percentage of B cells. Tumor regressions occurred in 6 of 15 patients (2 partial and 4 minor responses). The results of this single-dose trial have been used to design a multiple-dose phase I/II study.
The Ig idiotype of B-cell lymphoma can be used as a tumor-specific target. Prior trials with monoclonal anti-idiotype antibodies alone and combined with alpha-interferon have shown significant antitumor activity. In some patients, idiotype-negative tumors emerged after treatment. In this trial, patients with relapsed non-Hodgkin's lymphoma were treated with two identical courses of monoclonal anti-idiotype anti-body therapy. Concurrent with the second course, at a time when idiotype-negative cells were suspected to be proliferating, a pulse dose of chlorambucil was administered. Tumor biopsies obtained before the first and second courses of treatment and at relapse were analyzed for idiotype expression and proliferation. Thirteen patients received 24 courses of antibody with minimal toxicity. Eleven had tumor regression, with 1 complete remission, 8 partial remissions, and 2 minor remissions, with freedom from progression lasting a median of 7 months in responding patients. Idiotype-negative tumor cells appeared in some relapse specimens despite the use of chlorambucil. In retrospect, this was not surprising because there was no increase in the proliferative rate of these tumors at the time the drug was used. Anti-idiotype antibodies continue to demonstrate antitumor activity against B-cell lymphoma with minimal toxicity. The mechanism of the effect is presumed to involve both direct antiproliferative effects of the antibody on the tumor cells as well as indirect, more long-lasting effects on the host. The addition of a mild chemotherapeutic agent in the dose and schedule used here to the second cycle of antibody therapy did not interfere with the antitumor effect, nor did it decrease the emergence of idiotype-negative cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.