In South Africa, fertiliser and herbicide pollutants resulting from agricultural practices indirectly lead to the degradation of surface freshwater and groundwater quality. Nitrogen and phosphorus, and glyphosate, derived from agricultural fertiliser and herbicide applications, respectively, contribute to watercourse toxicity. Adjacent to many of the surface freshwater systems are some of South Africa’s most productive agricultural lands, where natural ecosystems are converted to croplands, resulting in the degradation of natural vegetation and deterioration of freshwater quality. The critically endangered status of some Renosterveld vegetation types is the product of agricultural expansion, nutrient loading through fertilisation and the spraying of herbicides. A buffer of Renosterveld vegetation along river corridors may contribute to the remediation of agricultural pollutants prior to entering watercourses. The utilisation of wetland plants occurring within Renosterveld for agricultural pollutant extraction can increase river corridor biodiversity, creating indigenous refuges and facilitating habitat connectivity. A laboratory phytoremediation system was designed and constructed to investigate the pollutant-removal potential of indigenous species occurring in Renosterveld vegetation (amongst other areas), compared with commonly used invasive alien plants (IAP) in floating wetland designs. Five pollutant parameters – ammonia, nitrate, orthophosphate and two glyphosate concentrations – reflect environmental stresses on 14 wetland species naturally occurring within Renosterveld vegetation. Effluent analyses indicated significant removal efficiencies for the indigenous vegetation across both fertiliser and herbicide pollutants, with the two most effective species identified as Phragmites australis and Cyperus textilis, with 95.87% and 96.42% removal, respectively. All wetland species displayed greater pollutant removal than the unvegetated soil control and when compared to an IAP and palmiet assemblage, indicated similar pollutant-removal efficiencies, justifying their use as an acceptable alternative.
In South Africa, rapid environmental degeneration caused by anthropogenic pollution poses a major ecological engineering problem, demanding proper resource mitigation strategies. For the treatment of polluted water and degraded soil systems, green infrastructure (GI) offers an effective, sustainable and affordable nature-based alternative to grey infrastructure. An additive benefit within GI, plant species provide enormous potential to treatment; however, species vary substantially in their pollutant removal and hydrologic performance. South African civil engineers tasked with designing GI often lack expertise and knowledge of plant behaviour and ecosystem dynamics. Therefore, this paper proposes a decision framework to facilitate selection for designing local GI in the form of a phyto-guide, based on existing recommendations and knowledge of removal processes and plant behaviour. Interdisciplinarity at the core of the phyto-guide relies on continuous specialist collaboration with each selection criteria, whilst efficiency and sustainability are considered equally important contributors to successful GI functioning. The spread of invasive alien plants, whether accidental or deliberate, negatively impacts an ecosystem’s capacity to deliver goods and services. Thus, the desire to optimize GI by incorporating effective phytoremediators cannot be prioritised over conservation concerns. In addition, this paper seeks to advance the GI limitation of relying solely on previously identified phytoremediators, by including evaluation criteria of beneficial plant traits as well as plant distribution, behaviour and diversity into the decision-making process for optimized GI. It is recommended that future research engages in discovering less invasive, naturally occurring local species as potential phytoremediators, inspired by South Africa’s rich biodiversity and endemism, as well as conveying the importance of consultation with engineers and ecologists for optimized GI.
Urban water managers, engineers and conservation ecologists in the Western Cape (WC) Province of South Africa are faced with a major environmental and human health challenge, with urbanisation, industrialisation, population growth and agricultural development placing pressure on the limited water and soil resources. In addressing this resource degradation an effective, affordable and sustainable solution is required. The implementation of ‘green infrastructure’ (GI), such as phytoremediation, involves the use of plants to hinder pollutant transport and attenuate runoff flow, protecting the health of the human population and the environment. However, care must be taken when selecting plant species due to possible invasive behaviour, affecting ecosystem dynamics. As a result of the need for resource remediation in both urban and rural areas, the use of non-invasive indigenous species is vital to an efficient and sustainable technology, as urban areas are often the initial sites for introduction from which invasions spread. This paper proposes indigenous WC species for potential use in GI, identified from global bioremediation literature, as an aid to the practicing civil engineer and water manager responsible for the design and management of the phytotechnology. These indigenous species offer potential as phytoremediators in local GI, as well as suggest the types of plants that should be investigated further as alternatives to effective exotics. The investigation returned 56 non-invasive WC plant species likely to aid resource remediation without jeopardising the conservation and biodiversity of the administered area. The selected vegetation is potentially capable of increasing heterogeneity and adjusting to the dynamic biogeographic conditions of the recipient habitat. Thus, distinct species capable of remediating a wide range of environmental contaminants for GI, into the diverse habitats of the WC, at a fraction of the cost of conventional techniques, are promoted.
The performance of plants to remove, remediate or immobilise environmental contaminants in a growth matrix through natural biological, chemical or physical activities was studied in a laboratory phytoremediation system. This study aimed to develop a novel phytoremediation system capable of investigating the remediation of agricultural pollutants by individual and multiple plant species. The designed system analysed community phytoremediation by uniquely implementing multiple plant species within the same growth silo, with indigenous and alien assemblages compared to establish community performance, highlighting the importance of biodiversity in plant assemblages. The constructed system successfully analysed the phytoremediatory capabilities of plant species within the critically endangered Renosterveld vegetation type, with unvegetated soil controls included to illustrate the pollutant removal efficiency of plants only. Growth silos were constructed from PVC piping and irrigated with drippers from a submersible pump. Eighteen different plant species were included in the experiment, i.e., 14 indigenous species, 3 invasive alien plant (IAP) species, and Palmiet. Five agricultural pollutant parameters were analysed, i.e., for fertilizers NH3-N, NO3--N and PO43--P and for herbicide contamination using two glyphosate concentrations. The growth silos and unvegetated soil control were irrigated using a pollutant–municipal water solution at 3-day intervals. The multiple plants per silo design approach seeks to contribute to the limited literature pertaining heterogeneity importance, by comparing the pollutant removal performance of plant assemblages. Community comparison further investigated the biofilter implementation potential of indigenous South African plants as an alternative to their more invasive alien counterparts, adding to the knowledge base of plant-based phytoremediation by indigenous South African plant species. The laboratory phytoremediation system successfully measured the agricultural pollutant removal performance of individual plants and vegetative communities, with soil remediation influence acknowledged. The proposed system is a simple and inexpensive method for obtaining the plant-based biofiltration efficiency of individual and multiple plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.