Aims: To isolate, select and evaluate Bacillus spp. as potential biological agents for enhancement of water quality in culture of ornamental fish. Methods and Results: Natural isolates obtained from mud sediment and Cyprinus carpio were purified and assessed in vitro for efficacy based on the inhibition of growth of pathogenic Aeromonas hydrophila and the decrease in concentrations of ammonium, nitrite, nitrate and phosphate ions. Based on suitability to predefined characteristics, the isolates B001, B002 and B003 were selected and evaluated in vitro in the presence of Aer. hydrophila and in a preliminary in vivo trial with C. carpio. The inhibitory effect on pathogen growth and the decrease in concentrations of waste ions was demonstrated. Based on 16S RNA sequence homology, the isolates were identified as Bacillus subtilis, Bacillus cereus and Bacillus licheniformis, respectively. Isolate B002 did not contain the anthrax virulence plasmids pOX1, pOX2 or the B. cereus enterotoxin. Conclusions: Selected isolates effected synergistic reduction in pathogen load and the concentrations of waste ions in vitro and in vivo and are safe for use in ornamental aquaculture. Significance and Impact of the Study: A new approach for assessment of biological agents was demonstrated and has yielded putative isolates for development into aquaculture products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.