Abstract-Data centers consume significant amounts of energy. As severs become more energy efficient with various energy saving techniques, the data center network (DCN) has been accounting for 20% or more of the energy consumed by the entire data center. While DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns. The objective of this work is to improve the energy efficiency of DCNs during off-peak traffic time by powering off idle devices. Although there exist a number of energy optimization solutions for DCNs, they consider only either the hosts or network, but not both. In this paper, we propose a joint optimization scheme that simultaneously optimizes virtual machine (VM) placement and network flow routing to maximize energy savings, and we also build an OpenFlow based prototype to experimentally demonstrate the effectiveness of our design. First, we formulate the joint optimization problem as an integer linear program, but it is not a practical solution due to high complexity. To practically and effectively combine host and network based optimization, we present a unified representation method that converts the VM placement problem to a routing problem. In addition, to accelerate processing the large number of servers and an even larger number of VMs, we describe a parallelization approach that divides the DCN into clusters for parallel processing. Further, to quickly find efficient paths for flows, we propose a fast topology oriented multipath routing algorithm that uses depth-first search to quickly traverse between hierarchical switch layers and uses the best-fit criterion to maximize flow consolidation. Finally, we have conducted extensive simulations and experiments to compare our design with existing ones. The simulation and experiment results fully demonstrate that our design outperforms existing host-or network-only optimization solutions, and well approximates the ideal linear program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.