A set of cycloisomerizaton methodologies of alkynyl ketones and imines with concurrent acyloxy, phosphatyloxy, or sulfonyloxy group migration, which allow for the efficient synthesis of multisubstituted furans and N-fused heterocycles has been developed. Investigation of the reaction course by way of employing 17 O-labelled substrates allowed for elucidation of the mechanisms behind these diverse transformations. It was found that, while the phosphatyloxy migration in conjugated alkynyl imines in their cycloisomerization to N-fused pyrroles proceeded via a [3,3]-sigmatropic rearrangement, the analogous cycloisomerization of skipped alkynyl ketones proceeds through two consecutive 1,2-migrations, resulting in an apparent 1,3-shift, followed by a subsequent 1,2-migration through competitive oxirenium and dioxolenylium pathways. Investigations of the 1,2-acyloxy migration of conjugated alkynyl ketones en route to furans demonstrated the involvement of a dioxolenylium intermediate. The mechanism of cycloisomerization of skipped alkynyl ketones containing an acyloxy group was found to be catalyst dependent; Lewis and Brønsted acid catalysts caused an ionization/S N 1' isomerization to the allene, followed by cycloisomerization to the furan, while transition metal-catalysts evoked a Rautenstrauch-type mechanistic pathway. Furthermore, control experiments in the cycloisomerization of skipped alkynyl ketones under transition metal catalysis revealed that, indeed, these reactions were catalyzed by transition metal complexes as opposed to Brønsted acids resulting from hydrolysis of these catalysts with eventual water. Further synthetic utility of the obtained phosphatyloxy-substituted heterocycles was demonstrated through their efficient employment in the Kumada cross-coupling reaction with various Grignard reagents.
An efficient three component coupling (TCC) reaction toward a variety of 3-aminoindoline and 3-aminoindole derivatives has been developed. This cascade transformation proceeds via the copper-catalyzed coupling reaction between 2-aminobenzaldehyde, secondary amine, and alkyne leading to propargylamine intermediate, which, under the reaction conditions, undergoes cyclization into the indoline core. The latter, upon treatment with a base, smoothly isomerizes into indole. Alternatively, indole can directly be synthesized in a one-pot sequential reaction.
Organocopper reagents smoothly react with heterocyclic propargyl mesylates at low temperature to produce N-fused heterocycles. The copper reagent plays a "double duty" in this novel cascade transformation, which proceeds via an SN2' substitution followed by a subsequent cycloisomerization step.
An efficient two-component palladium-catalyzed arylation/cyclization cascade approach toward a variety of N-fused pyrroloheterocycles has been developed. This transformation proceeds via the palladium-catalyzed coupling of aryl halides with propargylic esters or ethers followed by the 5-endo-dig cyclization leading to highly functionalized pyrroloheterocycles in good to excellent yield.
An efficient synthesis of densely substituted 2-aroyl indolizines via the palladium-catalyzed carbonylative cyclization/arylation is reported. This transformation proceeds via the 5-endo-dig cyclization of 2-propargylpyridine triggered by an aroyl Pd-complex. It produced diversely substituted 2-aroyl indolizines in good-to-excellent yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.