We report the isolation of a population of immature dental pulp stem cells (IDPSC), which express embryonic stem cell markers Oct-4, Nanog, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81 as well as several other mesenchymal stem cell markers during at least 25 passages while maintaining the normal karyotype and the rate of expansion characteristic of stem cells. The expression of these markers was maintained in subclones obtained from these cells. Moreover, in vitrothese cells can be induced to undergo uniform differentiation into smooth and skeletal muscles, neurons, cartilage, and bone under chemically defined culture conditions. After in vivo transplantation of these cells into immunocompromised mice, they showed dense engraftment in various tissues. The relative ease of recovery and the expression profiles of various markers justify further exploration of IDPSC for clinical therapy.
The fertilization rates and further development of 528 human metaphase II oocytes directly injected by a single spermatozoon were analysed with respect to their morphological features at the light microscopy level at the time of retrieval. The deviations of oocyte morphology which were most frequently observed, after removal of cumulus cells, were dark incorporations, dark zona pellucida, large perivitelline space, spots, vacuoles, refractile bodies and irregular shape. These deviations correlated neither with the fertilization rate nor with the embryo quality score, as compared to 'ideal' oocytes. Since the majority of oocytes displayed deviations from the 'ideal' morphotype but were still fertilized and developed in culture at a normal rate, they were probably as normal as 'ideal' oocytes. Since some of these morphotypes, such as refractile bodies, have been shown to be associated with failure of fertilization, it seems that intracytoplasmic sperm injection may be an appropriate method of treatment for couples in whom repeated failure of in-vitro fertilization is associated with the retrieval of dysmorphic oocytes in the presence of normal semen characteristics.
Intracytoplasmic sperm injection (ICSI) in the human is a very effective procedure which allows the fertilization of the majority of oocytes even in cases of extreme oligoasthenoteratozoospermia. Round-headed acrosomeless human spermatozoa, however, form an exception to this rule, because in about half of the couples with globozoospermia all oocytes remain unfertilized after injection. The incapacity of the spermatozoon to activate the oocyte following injection of round-headed spermatozoa could be the underlying mechanism. To investigate this hypothesis, activation rates of mouse oocytes injected with spermatozoa from a patient with globozoospermia were compared with those obtained after injection with normal spermatozoa. Of mouse oocytes surviving the injection with donor spermatozoa, 95% underwent activation, compared to none of the 88 mouse oocytes surviving the injection with round-headed spermatozoa. After fixation, prematurely condensed sperm chromosomes were found in these oocytes. Parthenogenetic activation of mouse oocytes (8% ethanol at 40 min after injection) injected with round-headed spermatozoa led to the activation of 96% of oocytes. These oocytes developed normally to the first mitosis and were fixed for analysis of the sperm karyotypes. The incidence of chromosomal abnormalities of round-headed spermatozoa (6%) was similar to that in spermatozoa from a fertile donor (9%). These data provide further information on the basic defect in cases of globozoospermia and demonstrate that globozoospermia is not associated with sperm karyotype abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.