We describe a general approach to the construction of a state evolution corresponding to the Markov generator of a spatial birth-and-death dynamics in R d . We present conditions on the birth-and-death intensities which are sufficient for the existence of an evolution as a strongly continuous semigroup in a proper Banach space of correlation functions satisfying the Ruelle bound. The convergence of a Vlasov-type scaling for the corresponding stochastic dynamics is considered. 4.11) hold. Then L V , D V is a generator of the holomorphic semigroup脹 V (t) on L C .
heuristic rather than mathematically justified assumptions, so that, e.g., the choice of the moment closure can be considered more of an art than a science. In this paper, we build on recent developments in specific branch of probability theory, Markov evolutions in the space of locally finite configurations, to develop a mathematically rigorous and practical framework that we expect to be widely applicable for theoretical ecology. In particular, we show how spatial moment equations of all orders can be systematically derived from the underlying individual-based assumptions. Further, as a new mathematical development, we go beyond mean-field theory by discussing how spatial moment equations can be perturbatively expanded around the mean-field model. While we have suggested such a perturbation expansion in our previous research, the present paper gives a rigorous mathematical justification. In addition to bringing mathematical rigor, the application of the mathematically well-established framework of Markov evolutions allows one to derive perturbation expansions in a transparent and systematic manner, which we hope will facilitate the application of the methods in theoretical ecology.
There is studied an infinite system of point entities in R d which reproduce themselves and die, also due to competition. The system's states are probability measures on the space of configurations of entities. Their evolution is described by means of a BBGKY-type equation for the corresponding correlation (moment) functions. It is proved that: (a) these functions evolve on a bounded time interval and remain sub-Poissonian due to the competition; (b) in the Vlasov scaling limit they converge to the correlation functions of the time-dependent Poisson point field the density of which solves the kinetic equation obtained in the scaling limit from the equation for the correlation functions. A number of properties of the solutions of the kinetic equation are also established.
We analyze an interacting particle system with a Markov evolution of birth-and-death type. We have shown that a local competition mechanism (realized via a density dependent mortality) leads to a globally regular behavior of the population in course of the stochastic evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.