Type 1 diabetes is a potentially life-threatening chronic condition that requires frequent interactions with diverse data to inform treatment decisions. While mobile technologies such as blood glucose meters have long been an essential part of this process, designing interfaces that explicitly support decision-making remains challenging. Dual-process models are a common approach to understanding such cognitive tasks. However, evidence from the first of two studies we present suggests that in demanding and complex situations, some individuals approach disease management in distinctive ways that do not seem to fit well within existing models. This finding motivated, and helped frame our second study, a survey (n=192) to investigate these behaviors in more detail. On the basis of the resulting analysis, we posit Fluid Contextual Reasoning to explain how some people with diabetes respond to particular situations, and discuss how an extended framework might help inform the design of user interfaces for diabetes management.
Abstract:Hundreds of diabetes self-management apps are available for smart phones, typically using a diary or logging methodology. This paper investigates how well such approaches help participants to make sense of collected data. We found that, while such systems typically support data and trend review, they are ill suited to helping users understand complex correlations in the data. The cognitively demanding user interfaces (UI's) of these apps are poorly adapted both to the restricted real estate of smartphone displays and to the daily needs of users. Many participants expressed the desire for intelligent, personalized and contextually aware near-term advice. By contrast, users did not see tools for reflection on prior data and behavior, seen as indispensable by many researchers, as a priority. We argue that while designers of future mobile health (mHealth) systems need to take advantage of automation through connected sensors, and the increasing subtlety of intelligent processing, it is also necessary to evolve current graphs and dashboards UI paradigms to assist users in longterm self-management health practices.
For those with chronic conditions, such as Type 1 diabetes, smartphone apps offer the promise of an affordable, convenient, and personalized disease management tool. However, despite significant academic research and commercial development in this area, diabetes apps still show low adoption rates and underwhelming clinical outcomes. Through user-interaction sessions with 16 people with Type 1 diabetes, we provide evidence that commonly used interfaces for diabetes self-management apps, while providing certain benefits, can fail to explicitly address the cognitive and emotional requirements of users. From analysis of these sessions with eight such user interface designs, we report on user requirements, as well as interface benefits, limitations, and then discuss the implications of these findings. Finally, with the goal of improving these apps, we identify 3 questions for designers, and review for each in turn: current shortcomings, relevant approaches, exposed challenges, and potential solutions.
Background Physical activity trackers such as the Fitbit can allow clinicians to monitor the recovery of their patients following surgery. An important issue when analyzing activity tracker data is to determine patients’ daily compliance with wearing their assigned device, using an appropriate criterion to determine a valid day of wear. However, it is currently unclear as to how different criteria can affect the reported compliance of patients recovering from ambulatory surgery. Investigating this issue can help to inform the use of activity data by revealing factors that may impact compliance calculations. Objective This study aimed to understand how using different criteria can affect the reported compliance with activity tracking in ambulatory surgery patients. It also aimed to investigate factors that explain variation between the outcomes of different compliance criteria. Methods A total of 62 patients who were scheduled to undergo total knee arthroplasty (TKA, ie, knee replacement) volunteered to wear a commercial Fitbit Zip activity tracker over an 8-week perioperative period. Patients were asked to wear the Fitbit Zip daily, beginning 2 weeks prior to their surgery and ending 6 weeks after surgery. Of the 62 patients who enrolled in the study, 20 provided Fitbit data and underwent successful surgery. The Fitbit data were analyzed using 5 different daily compliance criteria, which consider patients as compliant with daily tracking if they either register >0 steps in a day, register >500 steps in a day, register at least one step in 10 different hours of the day, register >0 steps in 3 distinct time windows, or register >0 steps in 3 out of 4 six-hour time windows. The criteria were compared in terms of compliance outcomes produced for each patient. Data were explored using heatmaps and line graphs. Linear mixed models were used to identify factors that lead to variation between compliance outcomes across the sample. Results The 5 compliance criteria produce different outcomes when applied to the patients’ data, with an average 24% difference in reported compliance between the most lenient and strictest criteria. However, the extent to which each patient’s reported compliance was impacted by different criteria was not uniform. Some individuals were relatively unaffected, whereas others varied by up to 72%. Wearing the activity tracker as a clip-on device, rather than on the wrist, was associated with greater differences between compliance outcomes at the individual level (P=.004, r=.616). This effect was statistically significant (P<.001) in the first 2 weeks after surgery. There was also a small but significant main effect of age on compliance in the first 2 weeks after surgery (P=.040). Gender and BMI were not associated with differences in individual compliance outcomes. Finally, the analysis revealed that surgery has an impact on patients’ compliance, with noticeable reductions in activity following surgery. These reductions affect compliance calculations by discarding greater amounts of data under strict criteria. Conclusions This study suggests that different compliance criteria cannot be used interchangeably to analyze activity data provided by TKA patients. Surgery leads to a temporary reduction in patients’ mobility, which affects their reported compliance when strict thresholds are used. Reductions in mobility suggest that the use of lenient compliance criteria, such as >0 steps or windowed approaches, can avoid unnecessary data exclusion over the perioperative period. Encouraging patients to wear the device at their wrist may improve data quality by increasing the likelihood of patients wearing their tracker and ensuring that activity is registered in the 2 weeks after surgery. Trial Registration ClinicalTrials.gov NCT03518866; https://clinicaltrials.gov/ct2/show/NCT03518866
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.