Actinium-225 and Bi have been used successfully in targeted alpha therapy (TAT) in preclinical and clinical research. This paper is a continuation of research activities aiming to expand the availability ofAc. The high-energy proton spallation reaction on natural thorium metal targets has been utilized to produce millicurie quantities of Ac. The results of sixteen irradiation experiments of thorium metal at beam energies between 78 and 192MeV are summarized in this work. Irradiations have been conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing was carried out at Oak Ridge National Laboratory (ORNL). Excitation functions for actinium and thorium isotopes, as well as for some of the fission products, are presented. The cross sections for production ofAc range from 3.6 to 16.7mb in the incident proton energy range of 78-192MeV. Based on these data, production of curie quantities of Ac is possible by irradiating a 5.0gcmTh target for 10 days in either BNL or LANL proton irradiation facilities.
Novel cobalt phosphonates [Co(H(2)O)(4)(H(4)L)][H(2)L].2H(2)O, 1, and Co(2)(H(2)O)(2)(L), 2, have been synthesized from 1,8-octylenediphosphonic acid (H(4)L). 1 has been fully characterized by X-ray single-crystal data, TGA, IR spectroscopy, and chemical analysis. The compound crystallizes in the triclinic space group P1 with a = 5.5415(8) A, b = 8.6382(8) A, c = 16.794 (2) A, alpha = 87.694(2) degrees, beta = 80.859(2) degrees, gamma = 76.005(2) degrees, V = 770.11(19) A(3), and Z = 1. A cobalt atom lies in the center of symmetry and is octahedrally coordinated by two oxygen atoms from two undissociated diphosphonic ligands H(4)L and four molecules of water. The cobalt atom and undissociated ligand H(4)L are combined to form polymeric chains along the c-axis, resulting in the formation of a one-dimensional framework. The positive charge on the cobalt atom remains upon coordination and is balanced by a negatively charged uncoordinated ligand (H(2)L) found as a clathrate in the lattice. Two lattice water molecules, hydrogen-bonded with the coordinated and uncoordinated ligands, complete the structure. The metal phosphonate chains are held together and bridge the uncoordinated anionic ligands by a number of strong hydrogen bonds, which make the structure possible. Cobalt phosphonate 2 has been characterized by TGA measurements, IR spectroscopy, and chemical analysis. The compound has a layered structure with an interlayer spacing of 14.26 A. Metal phosphonate layers are cross-linked by hydrocarbon chains. The water molecules are coordinated to the metal atom. According to IR data, compound 2 contains two equivalent PO bonds and one different PO bond, which may be a result of the different types of Co-O-P connectivity within one phosphonic group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.