Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008–0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15–20 mmHg) and HR (≈3 beat*s−1), followed by a slow recovery over 1–6 min; and 2) inhibitory modulations in BP (≈4.5 mmHg/g) and HR (≈0.15 beats*s−1/g) twice in each stimulus cycle. The BP and HR modulations were approximately in-phase with each other and were best evoked by low stimulus frequencies. A wavelet analysis indicated significant energies in BP and HR at scales related to twice and four times the stimulus frequency bands. BP and HR were also modulated by oscillation in pitch at frequencies 0.025–0.5 Hz. Sensitivities at 0.025 Hz were ≈4.5 mmHg/g (BP) and ≈0.17 beat*s−1/g (HR) for pitches of 20–90°. The tilt-induced BP and HR modulations were out-of-phase, but the frequencies at which responses were elicited by tilt and sGVS were the same. The results show that the sGVS-induced responses, which likely originate in the otolith organs, can exert a powerful inhibitory effect on both BP and HR at low frequencies. These responses have a striking resemblance to human vasovagal responses. Thus, sGVS-activated rats can potentially serve as a useful experimental model of the vasovagal response in humans.
Vision is important for locomotion in complex environments. How it is used to guide stepping is not well understood. We used an eye search coil technique combined with an active marker-based head recording system to characterize the gaze patterns of cats walking over terrains of different complexity: (1) on a flat surface in the dark when no visual information was available, (2) on the flat surface in light when visual information was available but not required, (3) along the highly structured but regular and familiar surface of a horizontal ladder, a task for which visual guidance of stepping was required, and (4) along a pathway cluttered with many small stones, an irregularly structured surface that was new each day. Three cats walked in a 2.5 m corridor, and 958 passages were analyzed. Gaze activity during the time when the gaze was directed at the walking surface was subdivided into four behaviors based on speed of gaze movement along the surface: gaze shift (fast movement), gaze fixation (no movement), constant gaze (movement at the body’s speed), and slow gaze (the remainder). We found that gaze shifts and fixations dominated the cats’ gaze behavior during all locomotor tasks, jointly occupying 62–84% of the time when the gaze was directed at the surface. As visual complexity of the surface and demand on visual guidance of stepping increased, cats spent more time looking at the surface, looked closer to them, and switched between gaze behaviors more often. During both visually guided locomotor tasks, gaze behaviors predominantly followed a repeated cycle of forward gaze shift followed by fixation. We call this behavior “gaze stepping”. Each gaze shift took gaze to a site approximately 75–80 cm in front of the cat, which the cat reached in 0.7–1.2 s and 1.1–1.6 strides. Constant gaze occupied only 5–21% of the time cats spent looking at the walking surface.
Muscle sympathetic nerve activity (MSNA) is modulated on a beat-to-beat basis by the baroreflex. Vestibular input from the otolith organs also modulates MSNA, but characteristics of the vestibulo-sympathetic reflex (VSR) are largely unknown. The purpose of this study was to elicit the VSR with electrical stimulation to estimate its latency in generating MSNA. The vestibular nerves of seven subjects were stimulated across the mastoids with short trains of high frequency, constant current pulses. Pulse trains were delivered every fourth heartbeat at delays of 300-700 ms after the R wave of the electrocardiogram. Vestibular nerve stimulation given 500 ms after the R wave significantly increased baroreflex-driven MSNA, as well as the diastolic blood pressure threshold at which bursts of MSNA occurred. These changes were specific to beats in which vestibular stimulation was applied. Electrical stimulation across the shoulders provided a control condition. When trans-shoulder trials were subtracted from trials with vestibular nerve stimulation, eliminating the background baroreflex-driven sympathetic activity, there was a sharp increase in MSNA beginning 660 ms after the vestibular nerve stimulus and lasting for about 60 ms. The increase in the MSNA produced by vestibular nerve stimulation, and the associated increase in the diastolic blood pressure threshold at which the baroreflex-driven bursts occurred, provide evidence for the presence of a short-latency VSR in humans that is likely to be important for the maintenance of blood pressure during rapid changes in head and body position with respect to gravity.
Trains that tilt on curves can go faster, but passengers complain of motion sickness. We studied the control signals and tilts to determine why this occurs and how to maintain speed while eliminating motion sickness. Accelerometers and gyros monitored train and passenger yaw and roll, and a survey evaluated motion sickness. The experimental train had 3 control configurations: an untilted mode, a reactive mode that detected curves from sensors on the front wheel set, and a predictive mode that determined curves from the train's position on the tracks. No motion sickness was induced in the untilted mode, but the train ran 21% slower than when it tilted 8° in either the reactive or predictive modes (113 vs. 137 km/h). Roll velocities rose and fell faster in the predictive than the reactive mode when entering and leaving turns (0.4 vs. 0.8 s for a 4°/s roll tilt, P<0.001). Concurrently, motion sickness was greater (P<0.001) in the reactive mode. We conclude that the slower rise in roll velocity during yaw rotations on entering and leaving curves had induced the motion sickness. Adequate synchronization of roll tilt with yaw velocity on curves will reduce motion sickness and improve passenger comfort on tilting trains.
To determine whether the COR compensates for the loss of aVOR gain, independent of species, we studied cynomolgus and rhesus monkeys in which all six semicircular canals were plugged. Gains and phases of the aVOR and COR were determined at frequencies ranging from 0.02 to 6 Hz and fit with model-based transfer functions. Following canal plugging in a rhesus monkey, the acute stage aVOR gain was small and there were absent responses to thrusts of yaw rotation. In the chronic state, aVOR behavior was characterized by a cupula/endolymph time constant of ≈0.07 s, responding only to high frequencies of head rotation. COR gains were ≈0 before surgery but increased to ≈0.15 at low frequencies just after surgery; the COR gains increased to ≈0.4 over the next 12 weeks. Nine weeks after surgery, the summated aVOR + COR responses compensated for head velocity in space in the 0.5–3 Hz frequency range. The gains and phases continued to improve until the 35th week, where the combined aVOR + COR stabilized with gains of ≈0.5–0.6 and the phases were compensatory over all frequencies. Two cynomolgus monkeys operated 3–12 years earlier had similar frequency characteristics of the aVOR and COR. The combined aVOR + COR gains were ≈0.4–0.8 with compensatory phases. To achieve gains close to 1.0, other mechanisms may contribute to gaze compensation, especially with the head free. Thus, while there are individual variations in the time of adaptation of the gain and phase parameters, the essential functional organization of the adaption to vestibular lesions is uniform across these species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.