We report our experience with a novel approach to interactive information seeking that is grounded in the idea of summarizing query results through automated document clustering. We went through a complete system development and evaluation cycle: designing the algorithms and interface for our prototype, implementing them and testing with human users. Our prototype acted as an intermediate layer between the user and a commercial Internet search engine (AltaVista), thus allowing searches of the signi®cant portion of World Wide Web. In our ®nal evaluation, we processed data from 36 users and concluded that our prototype improved search performance over using the same search engine (AltaVista) directly. We also analyzed eects of various related demographic and task related parameters.
In this article, we report our implementation and comparison of two text clustering techniques. One is based on Ward's clustering and the other on Kohonen's Self-organizing Maps. We have evaluated how closely clusters produced by a computer resemble those created by human experts. We have also measured the time that it takes for an expert to ''clean up'' the automatically produced clusters. The technique based on Ward's clustering was found to be more precise. Both techniques have worked equally well in detecting associations between text documents. We used text messages obtained from group brainstorming meetings. q
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.