In spite of a growing body of research and data, human ageing remains a poorly understood process. Over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), a collection of databases and tools for studying the biology and genetics of ageing. Here, we present HAGR’s main functionalities, highlighting new additions and improvements. HAGR consists of six core databases: (i) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; (ii) the AnAge database of animal ageing and longevity, featuring >4000 species; (iii) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; (iv) the LongevityMap database of human genetic association studies of longevity with >500 entries; (v) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; (vi) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts and regularly updated to ensure a high quality data. Cross-links across our databases and to external resources help researchers locate and integrate relevant information. HAGR is freely available online (http://genomics.senescence.info/).
In spite of a growing body of research and data, human ageing remains a poorly understood process. To facilitate studies of ageing, over 10 years ago we developed the Human Ageing Genomic Resources (HAGR), which are now the leading online resource for biogerontologists. In this update, we present HAGR's main functionalities, including new additions and improvements to HAGR. HAGR consists of five databases: 1) the GenAge database of ageing-related genes, in turn composed of a dataset of >300 human ageing-related genes and a dataset with >2000 genes associated with ageing or longevity in model organisms; 2) the AnAge database of animal ageing and longevity, featuring >4000 species; 3) the GenDR database with >200 genes associated with the life-extending effects of dietary restriction; 4) the LongevityMap database of human genetic association studies of longevity with >500 entries; 5) the DrugAge database with >400 ageing or longevity-associated drugs or compounds; 6) the CellAge database with >200 genes associated with cell senescence. All our databases are manually curated by experts to ensure a high quality data and presented in an intuitive and clear interface that includes cross-links across our databases and to external resources. HAGR is freely available online (http://genomics.senescence.info/).
One important question in aging research is how differences in genomics and transcriptomics determine the maximum lifespan in various species. Despite recent progress, much is still unclear on the topic, partly due to the lack of samples in nonmodel organisms and due to challenges in direct comparisons of transcriptomes from different species. The novel ranking‐based method that we employ here is used to analyze gene expression in the gray whale and compare its de novo assembled transcriptome with that of other long‐ and short‐lived mammals. Gray whales are among the top 1% longest‐lived mammals. Despite the extreme environment, or maybe due to a remarkable adaptation to its habitat (intermittent hypoxia, Arctic water, and high pressure), gray whales reach at least the age of 77 years. In this work, we show that long‐lived mammals share common gene expression patterns between themselves, including high expression of DNA maintenance and repair, ubiquitination, apoptosis, and immune responses. Additionally, the level of expression for gray whale orthologs of pro‐ and anti‐longevity genes found in model organisms is in support of their alleged role and direction in lifespan determination. Remarkably, among highly expressed pro‐longevity genes many are stress‐related, reflecting an adaptation to extreme environmental conditions. The conducted analysis suggests that the gray whale potentially possesses high resistance to cancer and stress, at least in part ensuring its longevity. This new transcriptome assembly also provides important resources to support the efforts of maintaining the endangered population of gray whales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.