Multiply protonated peptides and proteins in the gas phase can respond to near edge X-ray absorption in three different ways: (i) non dissociative ionization and ionization accompanied by loss of small neutrals, both known to dominate for proteins with masses in the 10 kDa range. (ii) Formation of immonium ions, dominating for peptides in the 1 kDa range. (iii) Backbone scission leading to sequence ions which is typically weaker and has mainly been observed for peptides in the 1 kDa range. We have studied carbon 1s photoexcitation and photoionization for a series of peptides and proteins with masses covering the range from 0.5 kDa to more than 10 kDa. The gas phase protonated molecules were trapped in a radiofrequency ion trap and exposed to synchrotron radiation. Time of flight mass spectrometry was employed for investigation of the photoionization and photofragmentation processes. A smooth transition from the photofragmentation regime to the non-dissociative photoionization regime is observed. Mass spectra are most complex in the few kDa regime, where non-dissociative ionization, backbone scission and immonium ion formation coexist. The observed correlation between protein size and fragmentation, i.e. radiation damage, is of relevance for soft X-ray microscopy.
We report on an experimental single-photon absorption study on gas-phase protonated collagen peptides employing a combination of mass spectrometry and synchrotron radiation. Partial ion yields for the main photoabsorption products vary steadily with photon energy over the range from 14 to 545 eV. At low energy, non-dissociative photoionisation competes with neutral molecule loss from the precursor ion, whereas fragmentation of the peptide backbone dominates at soft X-ray energies. Neutral molecule losses from the ionised peptide are found to have low energy barriers and most likely involve amino-acid residue side-chains with radical character, in particular aspartic acid. A particularly interesting finding is photoinduced loss of proline hydroxylation. The loss of this typical collagen post-translational modification might play a destabilizing role in the collagen structure.
(2017). Single-photon absorption of isolated collagen mimetic peptides and triple-helix models in the VUV-X energy range. Physical Chemistry Chemical Physics, 19(28) Cartilage and tendons owe their special mechanical properties to the fibrous collagen structure. These strong fibrils are aggregates of a sub-unit consisting of three collagen proteins wound around each other in a triple helix. Even though collagen is the most abundant protein in the human body, the response of this protein complex to ionizing radiation has never been studied. In this work, we probe the direct effects of VUV and soft X-ray photons on isolated models of the collagen triple helix, by coupling a tandem mass spectrometer to a synchrotron beamline. Single-photon absorption is found to induce electronic excitation, ionization and conversion into internal energy leading to inter-and intra-molecular fragmentation, mainly due to Gly-Pro peptide bond cleavages. Our results indicate that increasing the photon energy from 14 to 22 eV reduces fragmentation. We explain this surprising behavior by a smooth transition from excitation to ionization occurring with increasing photon energy. Moreover, our data support the assumption of a stabilization of the triple helix models by proline hydroxylation via intra-complex stereoelectronic effects, instead of the influence of solvent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.