Reaction of yttrium and lanthanum trichloride with 1 equiv of sodium or potassium hydrotris(3,5-dimethylpyrazolyl)borate and 1 equiv of 2,2'-bipyridine gives good yields of the complexes [MCl(2)(Tp(Me2))(C(10)H(8)N(2))] (M = Y (1), La (2)). The analogous compounds with 1,10-phenanthroline, [MCl(2)(Tp(Me2))(C(12)H(8)N(2))] (M = Y (3), La (4)), have been obtained by a similar procedure. The solid-state structures of 2-4 were determined by single-crystal X-ray diffraction and revealed that the compounds are all seven-coordinate with capped octahedral geometry. In contrast, reaction of yttrium trichloride with 1 equiv of sodium hydrotris(3,5-dimethylpyrazolyl)borate in the presence of 1 equiv of neocuproine affords [YCl(3)(Tp(Me2))][Na(neoc)(3))] (5). Compounds 1 and 2 provide an entry for the synthesis of complexes containing the bipyridyl ligand in a radical anionic form or in a dianionic form. Reaction of 1 and 2 with an excess of sodium amalgam gives [Y(Tp(Me2))(bipy)(THF)(2)] (6) and [La(Tp(Me2))(2)(bipy)] (7), respectively. The structures of both compounds have been determined by X-ray crystallography. Compound 7 can be oxidized with iodine to give [La(Tp(Me2))(2)(bipy)]I (8).
Reaction of yttrium and lanthanide trichlorides (Ln = La, Eu, Yb) with 1 equiv of the trisodium salt of 1,4,7-tris(dimethylsilylaniline)-1,4,7-triazacyclononane (Na(3)[(SiMe(2)NPh)(3)-tacn](THF)(2)) gives good yields of the compounds [M[(SiMe(2)NPh)(3)-tacn]] (M = Y (1), Eu (3), Yb (4)) and [La[(SiMe(2)NPh)(3)-tacn](THF)] (2). Reduction of 3 with Na/Hg followed by recrystallization in the presence of diglyme yielded crystals of [Eu[(SiMe(2)NPh)(3)-tacn]][Na(diglyme)(2)] (5). Synthesis of the uranium(III) complex [U[(SiMe(2)NPh)(3)-tacn]] (6) is achieved by reaction of 1 equiv of Na(3)[(SiMe(2)NPh)(3)-tacn](THF)(2) with uranium triiodide. The U(IV) complexes, [U[(SiMe(2)NPh)(3)-tacn]X] (X = Cl (7); I (8)), were prepared via oxidation of 6 with benzyl chloride or I(2), but salt metathesis from UCl(4) provided a higher yield route for 7. The solid-state structures of 1-7 were determined by single-crystal X-ray diffraction. The ligand [(SiMe(2)NPh)(3)-tacn] generates a trigonal prismatic coordination environment for the metal center in the neutral complexes 1, 3, 4, and 6 and the ionic 5. In 2 the six nitrogen atoms of the ligand are in a trigonal prismatic configuration with the oxygen atom of the THF capping one of the triangular faces of the trigonal prism. In 7 the coordination geometry around the uranium atom is best described as bicapped trigonal bipyramidal.
A new approach to design "antenna-ligands" to enhance the photoluminescence of lanthanide coordination compounds has been developed based on a π-type ligand-the polyphenyl-substituted cyclopentadienyl. The complexes of di-, tri-, and tetraphenyl cyclopentadienyl ligands with Tb and Gd have been synthesized and all the possible structural types from mononuclear to di- and tetranuclear complexes, as well as a coordination polymer were obtained. All types of the complexes have been studied by single-crystal X-ray diffraction and optical spectroscopy. All terbium complexes are luminescent at ambient temperature and two of them have relatively high quantum yields (50 and 60%). Analysis of energy transfer process has been performed and supported by quantum chemical calculations. The role of a low-lying intraligand charge transfer state formed by extra coordination with K in the Tb ion luminescence sensitization is discussed. New aspects for design of lanthanide complexes containing π-type ligands with desired luminescence properties have been proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.