Modern nanophotonics has witnessed the rise of “electric anapoles” (EDAs), destructive interferences of electric and toroidal electric dipoles, actively exploited to resonantly decrease radiation from nanoresonators. However, the inherent duality in Maxwell equations suggests the intriguing possibility of “magnetic anapoles,” involving a nonradiating composition of a magnetic dipole and a magnetic toroidal dipole. Here, a hybrid anapole (HA) of mixed electric and magnetic character is predicted and observed experimentally via dark field spectroscopy, with all the dominant multipoles being suppressed by the toroidal terms in a nanocylinder. Breaking the spherical symmetry allows to overlap up to four anapoles stemming from different multipoles with just two tuning parameters. This effect is due to a symmetry‐allowed connection between the resonator multipolar response and its eigenstates. The authors delve into the physics of such current configurations in the stationary and transient regimes and explore new ultrafast phenomena arising at sub‐picosecond timescales, associated with the HA dynamics. The theoretical results allow the design of non‐Huygens metasurfaces featuring a dual functionality: perfect transparency in the stationary regime and controllable ultrashort pulse beatings in the transient. Besides offering significant advantages with respect to EDAs, HAs can play an essential role in developing the emerging field of ultrafast resonant phenomena.
The development of new approaches to tuning the resonant magnetic response of simple all‐dielectric nanostructures is very important in modern nanophotonics. Here, it is shown that a resonant magnetic octupole (MOCT) response can be obtained by dividing a solid rectangular silicon block to a quadrumer structure with the introduction of narrow gaps between four nanocubes. The spectral position of the MOCT resonance is controlled and tuned by varying the distance between the nanocubes. It is demonstrated that several magnetic hot‐spots related to the MOCT resonance can be located in the gaps creating a strong magnetic field gradient in free space. It is observed that the resonant excitation of the MOCT moment leads to a significant enhancement of light absorption in the system at the spectral region, where light absorption in bulk silicon is weak. The results of this work can be applied to design new composite antennas and metamaterials based on complex building blocks, energy harvesting devices, and molecular trapping with magnetic hot‐spots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.