Dopamine transporter knockout (DAT‐KO) rats represent a valuable rodent model for studying the molecular and phenotypical outcomes of the effects of excessive dopamine accumulation in the synaptic cleft and the prolonged action of dopamine on neurons. Animals with DAT deficiency are characterized by hyperactivity, stereotypy, cognitive deficits, and impairments in behavioral and biochemical indicators. Several key pathophysiological mechanisms are known to be common to psychiatric, neurodegenerative, metabolic, and other diseases. Among these mechanisms, oxidative stress systems play a particularly important role. One of the main antioxidant systems in the brain is glutathione: specifically, glutathione S‐transferase, glutathione reductase, and catalase play a significant role in the regulation of vital oxidative processes, and their dysfunction has been shown in Parkinson's disease, Alzheimer's disease, and other neurodegenerative diseases. The current study aimed to analyze the dynamics of the activity levels of glutathione reductase and glutathione S‐transferase in erythrocytes, as well as catalase in the blood plasma, of DAT‐deficient, homo‐ and heterozygous, neonatal and juvenile rats (both male and female). Their behavioral and physiological parameters were evaluated at the age of 1.5 months. For the first time, changes in physiological and biochemical parameters were shown in DAT‐KO rats at 1.5 months of postnatal life. The key role of glutathione S‐transferase, glutathione reductase, and catalase in the regulation of oxidative stress in DAT‐KO rats at the 5th week of life was demonstrated. A positive effect of a slightly increased dopamine level on memory function was shown in DAT‐heterozygous animals.
<b><i>Introduction:</i></b> Neurotensin (NTS) is a 13-amino acid neuropeptide functionally linked with the brain dopaminergic system via expression of the NTS peptide or its receptor in dopamine neurons. Neuropeptide-binding immunoglobulins (Igs) are present in humans and can be involved in both physiological and pathological processes. Considering the functional link between NTS and dopamine neurons, we studied the occurrence of NTS-binding IgG autoantibodies in patients with Parkinson’s disease (PD). <b><i>Methods:</i></b> Plasma levels of NTS-binding IgG were analyzed using enzyme-linked immunosorbent assay in both male and female PD patents and in age-matched healthy controls. Possible microbial origin of NTS cross-reactive IgG was analyzed by sequence alignment of the 6-amino acid C-terminal NTS pharmacophore with bacterial and viral proteins from the public NCBI database. <b><i>Results:</i></b> NTS-binding IgG were detected in the plasma of all study subjects, while their levels were consistently lower in PD patients versus controls (<i>p</i> = 0.0001), independently from age or sex of the study participants. Moreover, PD patients with a more severe stage (2.5–3.0) of the disease had lower levels of NTS-binding IgG (<i>p</i> = 0.0004) than those with a milder stage (1.0–2.0). Furthermore, PD patients taking amantadine or high doses of levodopa had higher levels of NTS-binding IgG than those without medication. Contiguous sequence homology for the NTS pharmacophore was present in several microbial proteins occurring in human gut microbiota. <b><i>Discussion:</i></b> The study revealed that NTS-binding IgG occur naturally in humans and that PD patients display their low plasma levels accentuated by disease severity. The functional significance of this finding and its relevance to the pathophysiology of PD, including putative link to gut microbiota, remain to be studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.