Background and purpose Charcot‐Marie‐Tooth (CMT) disease is a chronic, slowly progressing disorder. The lack of specific disease progression biomarkers limits the execution of clinical trials. However, neurofilament light chain (NfL) has been suggested as a potential biomarker for peripheral nervous system disorders. Methods Ninety‐six CMT disease patients and 60 healthy controls were enrolled in the study. Disease severity assessment included clinical evaluation with CMT Neuropathy Score version 2 (CMTNSv2). Blood plasma NfL concentrations were measured using the single‐molecule array NfL assay. Results The NfL concentration was significantly higher in the CMT disease patient group than in the controls (p < 0.001). Of the CMT disease patients, those with type CMTX1 had a higher NfL level than those in the two other analysed subgroups (CMT1A and other CMT disease types) (p = 0.0498). The NfL concentration had a significant but weak correlation with the CMTNSv2 (rs = 0.25, p = 0.012). In one CMT disease patient with an extremely elevated NfL level, overlap with chronic inflammatory demyelinating polyneuropathy was suspected. Receiver operating characteristic analysis showed that an NfL concentration of 8.9 pg/ml could be used to discriminate CMT disease patients from controls, with an area under the curve of 0.881. Conclusions Our study confirmed that the plasma NfL concentration is significantly higher in CMT disease patients than in controls. Plasma NfL concentration was found to significantly, albeit weakly, reflect the clinical severity of CMT disease. In the future, NfL may be used, either individually or collaboratively, as a biomarker in the clinical context of suspected CMT disease; however, several issues need to be addressed first.
Summary Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein ( SRCAP ) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo ) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as “non-FLHS SRCAP -related NDD.” All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP , there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.
IntroductionChildhood acute lymphoblastic leukaemia (ALL) is a complex disease caused by a combination of genetic susceptibility and environmental exposure. Previous genome-wide association studies have reported several single nucleotide polymorphisms (SNPs) associated with the incidence of ALL. Several variations in genes encoding enzymes involved in carcinogenesis are suggested as being associated with an increased risk of ALL development.Material and methodsWe enrolled 77 paediatric ALL patients and 122 healthy controls, and in addition parental DNA was also available for 45 probands. SNPs rs10821936 (ARID5B), rs4132601 (IKZF1), rs2239633 (CEBPE), rs3731217 (CDKN2A) and rs1800566 (NQO1) and the presence of GSTT1 and GSTM1 null variants were detected. For statistical analysis the hybrid method of two designs ‘Haplin’ was used as well as linkage disequilibrium for family-based association studies.ResultsWe identified the SNP rs10821936 in the ARID5B gene as being statistically significantly associated with childhood ALL, especially if the C allele is in a homozygous state, relative risk (RR) 4.65, 95% CI: 2.03–10.6, p = 0.0006. Statistically significant differences were not found in other SNPs. We found risk combinations including all five variations, the strongest association being found in a combination where all five genetic variants are in a homozygous state, CCTTTTTTCC, p = 0.032.ConclusionsThe identified SNP rs10821936 could serve as a potential risk marker for childhood ALL development. Further studies in an independent population are needed for verification.
Background: Acute lymphoblastic leukemia (ALL) is a complex disease caused by interactions between hazardous exogenous or/and endogenous agents and many mild effect inherited susceptibility mutations. Some of them are known, but their functional roles still requireinvestigation. Age is a recognized risk factor; children with disease onset after the age of ten have worse prognosis, presumably also triggered by inherited factors. Materials and Methods: The MDR1 gene polymorphisms rs1045642, rs2032582 and MTHFR gene polymorphisms rs1801131 and rs1801133 were genotyped in 68 ALL patients in remission and 102 age and gender matched controls; parental DNA samples were also available for 42 probands. Results: No case control association was found between analyzed polymorphisms and a risk of childhood ALL development. Linkage disequilibrium was not observed in a family-based association study either. Only marginal association was observed between genetic marker rs2032582A and later disease onset (p=0.04). Conclusions: Our data suggest that late age of ALL onset could be triggered by mild effect common alleles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.