The structure and electric properties of hexagonal boron nitride (h-BN):graphene composite with additives of the conductive polymer PEDOT:PSS and ethylene glycol were examined. The graphene and h-BN flakes synthesized in plasma with nanometer sizes were used for experiments. It was found that the addition of more than 10−3 mass% of PEDOT:PSS to the graphene suspension or h-BN:graphene composite in combination with ethylene glycol leads to a strong decrease (4–5 orders of magnitude, in our case) in the resistance of the films created from these suspensions. This is caused by an increase in the conductivity of PEDOT:PSS due to the interaction with ethylene glycol and synergetic effect on the composite properties of h-BN:graphene films. The addition of PEDOT:PSS to the h-BN:graphene composite leads to the correction of the bonds between nanoparticles and a weak change in the resistance under the tensile strain caused by the sample bending. A more pronounced flexibility of the composite films with tree components is demonstrated. The self-organization effects for graphene flakes and polar h-BN flakes lead to the formation of micrometer sized plates in drops and uniform-in-size nanoparticles in inks. The ratio of the components in the composite was found for the observed strong hysteresis and a negative differential resistance. Generally, PEDOT:PSS and ethylene glycol composite films are promising for their application as electrodes or active elements for logic and signal processing.
A new approach for creating composite nanoparticles with various morphology and electric properties, based on uniform-sized small boron nitride (h-BN) nanosheets and graphene flakes, is suggested. For the first time, the structures from h-BN and graphene flakes synthesized in the helium direct current plasma jet are used to fabricate composite nanoparticles and films using 2D printing technology. A method for preparing a suspension based on these composite particles is developed. The morphology of graphene decoration with small h-BN flakes depends on the composite content. It includes, for instance, graphene flakes covered with vertically arranged h-BN flakes, graphene flakes encapsulated with a monolayer of h-BN flakes. The electric properties of films and printed structures from composite nanoparticles are strongly varied (especially for the printed compositions). However, the graphene content in all cases is higher than the percolation threshold. Some composites demonstrate nonlinear currentvoltage characteristics with the switching up to four orders of magnitude. In combination with the cheap printed technologies, the composite material is expected to be a perspective for electronic applications (informative processing, logic elements, tunneling graphene electronics, memristors, etc.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.