We present new whole-rock major and trace element, mineral chemistry, and U-Pb isotope data for the Ulan-Sar’dag mélange, including different lithostratigraphic units: Ophiolitic, mafic rocks and metavolcanites. The Ulan-Sar’dag mélange comprises of a seafloor and island-arc system of remnants of the Paleo-Asian ocean. Detailed studies on the magmatic rocks led to the discovery of a rock association that possesses differing geochemical signatures within the studied area. The Ulan-Sar’dag mélange includes blocks of mantle peridotite, podiform chromitite, cumulate rocks, deep-water siliceous chert, and metavolcanic rocks of the Ilchir suite. The ophiolitic unit shows overturned pseudostratigraphy. The nappe of mantle tectonites is thrusted over the volcanic-sedimentary sequence of the Ilchir suite. The metavolcanic series consist of basic, intermediate, and alkaline rocks. The mantle peridotite and cumulate rocks formed in a supra-subduction zone environment. The mafic and metavolcanic rocks belong to the following geochemical types: (1) Ensimatic island-arc boninites; (2) island-arc calc-alkaline andesitic basalts, andesites, and dacites; (3) tholeiitic basalts of mid-ocean ridges; and (4) oceanic island basalts. U–Pb dating of zircons from the trachyandesite, belonging to the second geochemical type, yielded a date of 833 ± 4 Ma which is interpreted as the crystallization age during mature island-arc and intra-arc rifting stages. The possible influence of later plume magmatic-hydrothermal activities led to the appearance of moderately alkaline igneous rocks (monzogabbro, trachybasalt, trachyandesite, subalkaline gabbro, and metasomatized peridotites) with a significant subduction geochemical fingerprint.
Data are presented on chromitites from the northern and southern sheets of the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur (Kharanur) massifs). The new and published data are used to consider similarities and differences between ore chrome-spinel from the chromitites of the northern and southern ophiolite sheets as well as the species diversity of PGE minerals and the evolution of PGE mineralization. Previously unknown PGE minerals have been found in the studied chromitites. Ore chrome-spinel in the chromitites from the northern sheet occurs in medium- and low-alumina forms, whereas the chromitites from the southern sheet contain only medium-alumina chrome-spinel. The PGE minerals in the chromitites from the southern sheet are Os–Ir–Ru solid solutions as well as sulfides and sulfoarsenides of these metals. The chromitites from the northern sheet contain the same PGE minerals and diverse Rh–Pt–Pd mineralization: Pt–Ir–Ru–Os and isoferroplatinum with Ir and Os–Ir–Ru lamellae. Areas of altered chromitites contain a wide variety of low-temperature secondary PGE minerals: Pt–Cu, Pt–Pd–Cu, PdHg, Rh2SnCu, RhNiAs, PtAs2, and PtSb2. The speciation of the PGE minerals is described along with multiphase intergrowths. The relations of Os–Ir–Ru solid solutions with laurite and irarsite are considered along with the microstructure of irarsite–osarsite–ruarsite solid solutions. Zoned Os–Ir–Ru crystals have been found. Zone Os82–99 in these crystals contains Ni3S2 inclusions, which mark off crystal growth zones. Different sources of PGE mineralization are presumed for the chromitites from the northern and southern sheets. The stages of PGE mineralization have been defined for the chromitites from the Il’chir ophiolite belt. The Pt–Ir–Ru–Os and (Os, Ru)S2 inclusions in Os–Ir–Ru solid solutions might be relics of primitive-mantle PGE minerals. During the partial melting of the upper mantle, Os–Ir–Ru and Pt–Fe solid solutions formed syngenetically with the chromitites. During the late-magmatic stage, Os–Ir–Ru solid solutions were replaced by sulfides and sulfarsenides of these metals. Mantle metasomatism under the effect of reduced mantle fluids was accompanied by PGE remobilization and redeposition with the formation of the following assemblage: garutiite (Ni,Fe,Ir), zaccariniite (RhNiAs), (Ir,Ni,Cu)S3, Pt–Cu, Pt–Cu–Fe–Ni, Cu–Pt–Pd, and Rh–Cu–Sn–Sb. The zoned Os–Ir–Ru crystals in the chromitites from the northern sheet suggest dissolution and redeposition of Os–Ir–Ru primary-mantle solid solutions by bisulfide complexes. Most likely, the PGE remobilization took place during early serpentinization at 450–600 ºC and 13–16 kbar. During the crustal metamorphic stage, tectonic movements (obduction) and a change from reducing to oxidizing conditions were accompanied by the successive transformation of chrome-spinel into ferrichromite–chrome-magnetite with the active participation of a metamorphic fluid enriched in crustal components. The orcelite–maucherite–ferrichromite–sperrylite assemblage formed in epidote-amphibolitic facies settings during this stage. The PGE mineral assemblage reflects different stages in the formation of the chromitites and dunite-harzburgite host rocks and their transformation from primitive mantle to crustal metamorphic processes.
In this paper, we present the first detailed study on the chromitites and platinum-group element mineralization (PGM) of the Ulan-Sar’dag ophiolite (USO), located in the Central Asian Fold Belt (East Sayan). Three groups of chrome spinels, differing in their chemical features and physical–chemical parameters, under equilibrium conditions of the mantle mineral association, have been distinguished. The temperature and log oxygen fugacity values are, for the chrome spinels I, from 820 to 920 °C and from (−0.7) to (−1.5); for chrome spinels II, 891 to 1003 °C and (−1.1) to (−4.4); and for chrome spinels III, 738 to 846 °C and (−1.1) to (−4.4), respectively. Chrome spinels I were formed through the interaction of peridotites with mid-ocean ridge basalt (MORB)-type melts, and chrome spinels II were formed through the interaction of peridotites with boninite melts. Chrome spinels III were probably formed through the interaction of andesitic melts with rocks of an overlying mantle wedge. Chromitites demonstrate the fractionated form of the distribution of the platinum-group elements (PGE), which indicates a high degree of partial melting at 20–24% of the mantle source. Two assemblages of PGM have been distinguished: The primary PGE assemblage of Os-Ir-Ru alloys-I, (Os,Ru)S2, and IrAsS, and the secondary PGM assemblage of Os-Ir-Ru alloys-II, Os0, Ru0, RuS2, OsS2, IrAsS, RhNiAs with Ni, Fe, and Cu sulfides. The formation of the secondary phases of PGE occurred upon exposure to a reduced fluid, with a temperature range of 300–700 °C, log sulfur fugacity of (−20), and pressure of 0.5 kbar. We have proposed a scheme for the sequence of the formation and transformation of the PGMs at various stages of the evolution of the Ulan-Sar’dag ophiolite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.