The paper analyses operating and developing technologies for hydrogen implementation, transition, and storage at operating thermal power plants (TPPs) to make recommendations for realization of perspective projects for evaluation of the use of hydrogen as a fuel. Over the medium-term horizon of the next decade, it is suggested that using the technology of burning a mixture of hydrogen and natural gas in gas turbines and gas-and-oil-fired boilers in volume fractions of 20% and 80%, respectively, be implemented at operating gas fired TPPs. We consider the construction of the liquefied hydrogen and natural gas storage warehouses for the required calculated quantities of the gas mixture as a reserve energy fuel for operating the TPPs. We consider the possibility of the reserve liquid fuel system being replaced by the technology involving storage of liquefied hydrogen in combination with natural gas. An economic assessment of the storing cost of reserve fuel on the TPP site is given. The paper suggests that the methane-hydrogen mixture be supplied to the TPP site by two independent gas pipelines for the possibility of using the mixture as the main fuel and to exclude fuel storage at the plant.
The variety of possible solutions for the integration of heat pumps (HP) into the circuits of generation facilities dictates the need for preliminary selection of the most promising options. Determining the maximally economically efficient HP capacity may be the key limiting factor for the potential range of solutions. The purpose of the study is to analyze the influence of the type of power equipment of a thermal power plant (TPP) on the choice of HP capacity. In the course of the study, we identified factors that can influence the choice of HP capacity. The correlation between the limitation of the maximum capacity of HP (from the point of view of break-even operation in the electricity market) from the electric capacity and the efficiency of the TPP equipment was established. The ranges of HP capacity for the most common types of TPP power equipment in the Russian Federation were determined. The maximum HP capacity for TPPs based on a steam turbine unit (STU) of type K-300-170- 1P was determined. The method proposed in the paper allows limiting the number of circuits options, as well as TPPs and external conditions suitable for the use of HP. Firstly, under the conditions of a given power system and fuel prices, it is possible to determine the type of power equipment of a TPP in combination with which HP can be used. Secondly, under the conditions of a given power system and type of equipment, the maximum fuel price at which HP can be used at thermal power plants can be determined. Thirdly, under the conditions of a given type of equipment and fuel price, it is possible to select an energy system (region) in which it is possible to build a TPP with HP. It was found that increasing the efficiency of thermal power plant equipment contributes to increasing the HP power capacity and expanding the range of external conditions under which the use of HP becomes rational. It was verified that for TPP equipment of a given type, the use of HP is more rational when operating in cogeneration mode. It was found that, all other conditions being equal, an essential factor determining the range of HP capacity is the electric capacity of TPPs.
The paper considers the integration and joint operation of a methane steam reforming unit (MSRU) and a heat pump unit (HPU) at a thermal power plant (TPP) as one of the possible ways to follow the global decarbonization policy. Research methods are simulation modeling of a thermal power plant in the program “United Cycle” and analysis of thermodynamic cycles of heat pumps. The Petrozavodskaya combined heat and power plant (CHPP) was selected as the object of the research. During the research, technological schemes for hydrogen production at the Petrozavodskaya CHPP were developed: with steam extraction to MSRU from a live steam collector and with the use of production steam. A scheme for HPU integration is proposed to reduce the cost of hydrogen and to reduce waste heat. A heat pump is used to preheat natural gas before going to MSRU. A method for determining fuel costs for hydrogen production in the trigeneration cycle of a thermal power plant was developed. The minimum specific fuel consumption for hydrogen production—7.854 t ref.f./t H2—is achieved in the mode with steam extraction to MSRU from the turbine PT-60-130/13 (industrial extraction with a flow rate of 30 t/h). At this mode, the coefficient of fuel heat utilization is the highest among all modes with hydrogen production—66.18%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.