A new strategy has been developed for conjugation of peptides to oligonucleotides. The method is based on the "native ligation" of an N-terminal thioester-functionalized peptide to a 5'-cysteinyl oligonucleotide. Two new reagents were synthesized for use in solid-phase peptide and oligonucleotide synthesis, respectively. Pentafluorophenyl S-benzylthiosuccinate was used in the final coupling step in standard Fmoc-based solid-phase peptide assembly. Deprotection with trifluoracetic acid generated in solution peptides substituted with an N-terminal S-benzylthiosuccinyl moiety. O-trans-4-(N-alpha-Fmoc-S-tert-butylsulfenyl-L-cysteinyl)aminoc yclohe xyl O-2-cyanoethyl-N,N-diisopropylphosphoramidite was used in the final coupling step in standard phosphoramidite solid-phase oligonucleotide assembly. Deprotection with aqueous ammonia solution generated in solution 5'-S-tert-butylsulfenyl-L-cysteinyl functionalized oligonucleotides. Functionalized peptides and oligonucleotides were used without purification in native ligation conjugation reactions in aqueous/organic solution using tris-(2-carboxyethyl)phosphine to remove the tert-butylsulfenyl group in situ and thiophenol as a conjugation enhancer. A range of peptide-oligonucleotide conjugates were prepared by this route and purified by reversed-phase HPLC.
The HIV-1 trans-activation responsive element (TAR) RNA stem-loop interacts with the HIV trans-activator protein Tat and other cellular factors to stimulate transcriptional elongation from the viral long terminal repeat (LTR). Inhibitors of these interactions block full-length transcription and, hence, would potentially inhibit HIV replication. We have studied structure-activity relationships in inhibition of trans-activation by steric block 2'-O-methyl (OMe) oligonucleotides chimeras (mixmers) containing locked nucleic acid (LNA) units. Inhibition was measured both in Tat-dependent in vitro transcription from an HIV-1 DNA template directed by HeLa cell nuclear extract and in a robust HeLa cell reporter assay that involves use of stably integrated plasmids to express firefly luciferase Tat dependently and Renilla luciferase Tat-independently. OMe oligonucleotides with optimally 40%-50% LNA units and a minimum of 12 residues in length were active in the cellular assay when delivered with cationic gemini surfactant GS11 at 50% inhibitory concentrations of 230 +/- 40 nM, whereas activity in the in vitro transcription assay was observed down to 9 residues. No cellular activity was observed for OMe oligonucleotides of 12 or 16 residues, which was shown to be due to poor cellular uptake. Both 12-mer mixmers containing alpha -L-LNA or 2'-thio-LNA (S-LNA) were also active in in vitro transcription and the former in cellular reporter inhibition assays, demonstrating that the property of promotion of cellular uptake by LNA is not due to specific sugar conformational effects. Covalent conjugates of OMe/LNA chimeras with Kaposi-fibroblast growth factor (K-FGF) or Transportan peptides failed to enter HeLa cells without a delivery agent but were fully active when delivered by cationic gemini surfactant, showing that in principle, peptide conjugation does not interfere with cellular activity. Thus, OMe/LNA mixmers are powerful reagents for use as steric block inhibitors of gene expression regulated by protein-RNA interactions within HeLa cell nuclei.
2'-Deoxyoligonucleotides and 2'-O-methyloligoribonucleotides carrying one or more 2'-aldehyde groups were synthesized and coupled to peptides containing an N-terminal cysteine, aminooxy, or hydrazide group to give peptide-oligonucleotide conjugates incorporating single or multiple peptides in good yield. The facile conjugation method allows specific coupling in aqueous solution of unprotected oligonucleotides containing aldehyde groups to unprotected N-terminally modified peptides and other small molecules. A 12-mer 2'-O-methyloligoribonucleotide complementary to the HIV-1 TAR RNA stem-loop and containing two conjugated copies of an 8-mer model laminin peptide was hardly affected in TAR RNA binding and showed a similar level of inhibition of HIV-1 Tat-dependent in vitro transcription compared to the unconjugated 2'-O-methyloligoribonucleotide. Advantages of this conjugation method include (1) the ability to attach more than one peptide or other small molecule to oligonucleotide at defined nucleoside residue locations; (2) a conjugation route that does not affect significantly oligonucleotide binding to RNA structures; and (3) three alternative, facile, and mild conjugation reaction types that do not require use of a large excess of peptide reagent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.