The orchestrated interaction of transmembrane proteins with other molecules mediates several crucial biological processes. Detergent solubilization may significantly alter or even abolish such hetero-oligomeric interactions, which makes observing them at high resolution in their native environment technically challenging. Dipolar electron paramagnetic resonance (EPR) techniques such as pulsed electro-electron double resonance (PELDOR) can provide very precise distances within biomolecules. To concurrently determine the inter-subunit interaction and the intra-subunit conformational changes in hetero-oligomeric complexes, a combination of different spin labels is required. Orthogonal spin labeling using a triarylmethyl (TAM) label in combination with a nitroxide label is used to detect protein-ligand interactions in native lipid bilayers. This approach provides a higher sensitivity and total selectivity and will greatly facilitate the investigation of multimeric transmembrane complexes employing different spin labels in the native lipid environment.
Dynamic nuclear polarization exploits electron spin polarization to boost signal-to-noise in magic-angle-spinning (MAS) NMR, creating new opportunities in materials science, structural biology, and metabolomics studies. Since protein NMR spectra recorded under DNP conditions can show improved spectral resolution at 180-200 K compared to 110 K, we investigate the effects of AMUPol and various deuterated TOTAPOL isotopologues on sensitivity and spectral resolution at these temperatures, using proline and reproducibly prepared SH3 domain samples. The TOTAPOL deuteration pattern is optimized for protein DNP MAS NMR, and signal-to-noise per unit time measurements demonstrate the high value of TOTAPOL isotopologues for Protein DNP MAS NMR at 180-200 K. The combined effects of enhancement, depolarization, and proton longitudinal relaxation are surprisingly sample-specific. At 200 K, DNP on SH3 domain standard samples yields a 15-fold increase in signal-to-noise over a sample without radicals. 2D and 3D NCACX/NCOCX spectra were recorded at 200 K within 1 and 13 hours, respectively. Decreasing enhancements with increasing H-content at the CH sites of the TEMPO rings in CD-TOTAPOL highlight the importance of protons in a sphere of 4-6 Å around the nitroxyl group, presumably for polarization pickup from electron spins.
Pulsed electron paramagnetic resonance (EPR) spectroscopy is a valuable technique for the precise determination of distances between paramagnetic spin labels that are covalently attached to macromolecules. Nitroxides have commonly been utilised as paramagnetic tags for biomolecules, but trityl radicals have recently been developed as alternative spin labels. Trityls exhibit longer electron spin relaxation times and higher stability than nitroxides under in vivo conditions. So far, trityl radicals have only been used in pulsed EPR dipolar spectroscopy (PDS) at X-band (9.5 GHz), Ku-band (17.2 GHz) and Q-band (34 GHz) frequencies. In this study we investigated a trityl biradical by PDS at Q-band (34 GHz) and G-band (180 GHz) frequencies. Due to the small spectral width of the trityl (30 MHz) at Q-band frequencies, single frequency PDS techniques, like double-quantum coherence (DQC) and single frequency technique for refocusing dipolar couplings (SIFTER), work very efficiently. Hence, Q-band DQC and SIFTER experiments were performed and the results were compared; yielding a signal to noise ratio for SIFTER four times higher than that for DQC. At G-band frequencies the resolved axially symmetric g-tensor anisotropy of the trityl exhibited a spectral width of 130 MHz. Thus, pulsed electron electron double resonance (PELDOR/DEER) obtained at different pump-probe positions across the spectrum was used to reveal distances. Such a multi-frequency approach should also be applicable to determine structural information on biological macromolecules tagged with trityl spin labels.
Pulsed Electron-Electron Double Resonance (PELDOR) has attracted considerable attention for biomolecular applications, as it affords precise measurements of distances between pairs of spin labels in the range of 1.5-8 nm. Usually nitroxide moieties incorporated by site-directed spin labelling with cysteine residues are used as spin probes in protein systems. Recently, naturally occurring cofactors and metal ions have also been explored as paramagnetic spin species for such measurements. In this work we investigate the performance of PELDOR between a nitroxide spin label and a high-spin Mn(2+) ion in a synthetic model compound at Q-band (34 GHz) and G-band (180 GHz). We demonstrate that the distances obtained with high-frequency PELDOR are in good agreement with structural predictions. At Q-band frequencies experiments have been performed by probing either the high-spin Mn(2+) ion or the nitroxide spin label. At G-band frequencies we have been able to detect changes in the dipolar oscillation frequency, depending on the pump-probe positions across the g-tensor resolved nitroxide EPR spectrum. These changes result from the restricted mobility of the nitroxide spin label in the model compound. Our results demonstrate that the high-spin Mn(2+) ion can be used for precise distance measurements and open the doors for many biological applications, as naturally occurring Mg(2+) sites can be readily exchanged for Mn(2+).
Dynamic nuclear polarization (DNP) enhances the sensitivity of solid-state NMR (SSNMR) spectroscopy by orders of magnitude and, therefore, opens possibilities for novel applications from biology to materials science. This multitude of opportunities implicates a need for high-performance polarizing agents, which integrate specific physical and chemical features tailored for various applications. Here, we demonstrate that for the biradical bTbK in complex with captisol (CAP), a β-cyclodextrin derivative, host-guest assembling offers a new and easily accessible approach for the development of new polarizing agents. In contrast to bTbK, the CAP-bTbK complex is water-soluble and shows significantly improved DNP performance compared to the commonly used DNP agent TOTAPOL. Furthermore, NMR and EPR data reveal improved electron and nuclear spin relaxation properties for bTbK within the host molecule. The numerous possibilities to functionalize host molecules will permit designing novel radical complexes targeting diverse applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.