Microtubule networks (MTs) are a component of a cell that may indicate the presence of various chemical compounds and can be used to recognize properties such as treatment resistance. Therefore, the classification of MT images is of great relevance for cell diagnostics. Human experts find it particularly difficult to recognize the levels of chemical compound exposure of a cell. Improving the accuracy with automated techniques would have a significant impact on cell therapy. In this paper we present the application of Deep Learning to MT image classification and evaluate it on a large MT image dataset of animal cells with three degrees of exposure to a chemical agent. The results demonstrate that the learned deep network performs on par or better at the corresponding cell classification task than human experts. Specifically, we show that the task of recognizing different levels of chemical agent exposure can be handled significantly better by the neural network than by human experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.