The high-temperature, all-inorganic CsPbI3 perovskite black phase is metastable relative to its yellow, nonperovskite phase at room temperature. Because only the black phase is optically active, this represents an impediment for the use of CsPbI3 in optoelectronic devices. We report the use of substrate clamping and biaxial strain to render black-phase CsPbI3 thin films stable at room temperature. We used synchrotron-based, grazing incidence, wide-angle x-ray scattering to track the introduction of crystal distortions and strain-driven texture formation within black CsPbI3 thin films when they were cooled after annealing at 330°C. The thermal stability of black CsPbI3 thin films is vastly improved by the strained interface, a response verified by ab initio thermodynamic modeling.
The diffraction beamline BM01A at the European Synchrotron Radiation Facility (CRG Swiss-Norwegian beamlines) has been successfully operational for 20 years. Recently, a new multifunctional diffractometer based on the Dectris Pilatus 2M detector has been constructed, commissioned and offered to users. The diffractometer combines a fast and low-noise area detector, which can be tilted and moved horizontally and vertically, together with flexible goniometry for sample positioning and orientation. The diffractometer is controlled by a user-friendly and GUI-based software Pylatus which is also used to control various auxiliary equipment. The latter includes several heating and cooling devices, in situ cells and complimentary spectroscopic tools.
Antiferroelectrics are essential ingredients for the widely applied piezoelectric and ferroelectric materials: the most common ferroelectric, lead zirconate titanate is an alloy of the ferroelectric lead titanate and the antiferroelectric lead zirconate. Antiferroelectrics themselves are useful in large digital displacement transducers and energy-storage capacitors. Despite their technological importance, the reason why materials become antiferroelectric has remained allusive since their first discovery. Here we report the results of a study on the lattice dynamics of the antiferroelectric lead zirconate using inelastic and diffuse X-ray scattering techniques and the Brillouin light scattering. The analysis of the results reveals that the antiferroelectric state is a 'missed' incommensurate phase, and that the paraelectric to antiferroelectric phase transition is driven by the softening of a single lattice mode via flexoelectric coupling. These findings resolve the mystery of the origin of antiferroelectricity in lead zirconate and suggest an approach to the treatment of complex phase transitions in ferroics.
A highly porous form of Mg(BH4)2 (see picture; Mg green, BH4 blue, unit cells shown in red) reversibly absorbs H2, N2, and CH2Cl2. At high pressures, this material transforms into an interpenetrated framework that has 79 % higher density than the other polymorphs. Mg(BH4)2 can act as a coordination polymer that has many similarities to metal–organic frameworks
A combination of synchrotron X-ray diffraction techniques have been applied to resolve ambiguities between experimental and theoretical studies of LiBH4 and to reveal its complex structural evolution as a function of temperature. Crystal structures of the low- and high-temperature polymorphs of LiBH4 have been determined from diffraction on single-crystals. In contrast to recent theoretical conjectures, we find that the high-temperature structure is hexagonal, space group P63mc. Experimental data suggest a nearly isotropic disorder of the rigid tetrahedral BH4 groups as one of the factors stabilizing the hexagonal structure. Tetrahedral BH4 anions are undistorted and geometrically very similar in both polymorphs. The first order phase transition at 381 K is preceded by highly anisotropic lattice expansion and is accompanied by a negative volume change. Disorder phenomena and strong lattice anharmonicity, being ignored, lead to the failure of theoretical predictions of the structural stability of LiBH4 published so fa
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.