We evaluate analytically all previously unknown nonplanar master integrals for massless fiveparticle scattering at two loops, using the differential equations method. A canonical form of the differential equations is obtained by identifying integrals with constant leading singularities, in D space-time dimensions. These integrals evaluate to Q-linear combinations of multiple polylogarithms of uniform weight at each order in the expansion in the dimensional regularization parameter, and are in agreement with previous conjectures for nonplanar pentagon functions. Our results provide the complete set of two-loop Feynman integrals for any massless 2 → 3 scattering process, thereby opening up a new level of precision collider phenomenology.
In Phys. Rev. Lett. 116 (2016) 062001, the space of planar pentagon functions that describes all two-loop on-shell five-particle scattering amplitudes was introduced. In the present paper we present a natural extension of this space to non-planar pentagon functions. This provides the basis for our pentagon bootstrap program. We classify the relevant functions up to weight four, which is relevant for two-loop scattering amplitudes. We constrain the first entry of the symbol of the functions using information on branch cuts. Drawing on an analogy from the planar case, we introduce a conjectural second-entry condition on the symbol. We then show that the information on the function space, when complemented with some additional insights, can be used to efficiently bootstrap individual Feynman integrals. The extra information is read off of Mellin-Barnes representations of the integrals, either by evaluating simple asymptotic limits, or by taking discontinuities in the kinematic variables. We use this method to evaluate the symbols of two non-trivial non-planar five-particle integrals, up to and including the finite part.
We establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled N = 4 SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet Feynman graph of disc topology cut out of a regular square lattice. The Yangian can be realized by the action of a product of Lax operators with a specific sequence of inhomogeneity parameters on the boundary of the disc. Based on this observation, the Yangian generators of level one for generic bi-scalar amplitudes are explicitly constructed. Finally, we comment on the relation to the dual conformal symmetry of these scattering amplitudes.This paper is dedicated to the memory of L.D.Faddeev.
We compute the full-color two-loop five-gluon amplitude for the all-plus helicity configuration. In order to achieve this, we calculate the required master integrals for all permutations of the external legs, in the physical scattering region. We verify the expected divergence structure of the amplitude, and extract the finite hard function. We further validate our result by checking the factorization properties in the collinear limit. Our result is fully analytic and valid in the physical scattering region. We express it in a compact form containing logarithms, dilogarithms and rational functions.
Various classes of fishnet Feynman graphs are shown to feature a Yangian symmetry over the conformal algebra. We explicitly discuss scalar graphs in three, four and six spacetime dimensions as well as the inclusion of fermions in four dimensions. The Yangian symmetry results in novel differential equations for these families of largely unsolved Feynman integrals. Notably, the considered fishnet graphs in three and four dimensions dominate the correlation functions and scattering amplitudes in specific double scaling limits of planar, γ-twisted N = 4 super Yang-Mills or ABJM theory. Consequently, the study of fishnet graphs allows us to get deep insights into the integrability of the planar AdS/CFT correspondence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.