Anthraquinone-2,7-disulfonic acid (2,7-AQDS) is a promising organic compound, which is considered as a negolyte for redox flow batteries as well as for other applications. In this work we carried out a well-known reaction of anthraquinone sulfonation to synthesize 2,7-AQDS in mixture with other sulfo-derivatives, namely 2,6-AQDS and 2-AQS. Redox behavior of this mixture was evaluated with cyclic voltammetry and was almost identical to 2,7-AQDS. Mixture was then assessed as a potential negolyte of anthraquinone-bromine redox flow battery. After adjusting membrane-electrode assembly composition (membrane material and flow field)), the cell demonstrated peak power density of 335 mW cm−2 (at SOC 90%) and capacity utilization, capacity retention and energy efficiency of 87.9, 99.6 and 64.2%, respectively. These values are almost identical or even higher than similar values for flow battery with 2,7-AQDS as a negolyte, while the price of mixture is significantly lower. Therefore, this work unveils the promising possibility of using a mixture of crude sulfonated anthraquinone derivatives mixture as an inexpensive negolyte of RFB.
The proposed anthraquinone-bromate cell combines the advantages of anthraquinone-bromine redox flow batteries and novel hybrid hydrogen-bromate flow batteries. The anthraquinone-2,7-disulfonic acid is of interest as a promising organic negolyte due its high solubility, rapid kinetics of electrode reactions and suitable redox potentials combined with a high chemical stability during redox reactions. Lithium or sodium bromates as posolytes provide an anomalously high discharge current density of order ~A cm−2 due to a novel autocatalytic mechanism. Combining these two systems, we developed a single cell of novel anthraquinone-bromate flow battery, which showed a power density of 1.08 W cm−2, energy density of 16.1 W h L−1 and energy efficiency of 72% after 10 charge–discharge cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.