Ellagitannins (ETs), characterized by their diversity and chemical complexity, belong to the class of hydrolysable tannins that, via hydrolysis under acidic or alkaline conditions, can yield ellagic acid (EA). They are mostly found as a part of extractives in angiosperms. As known antioxidants and chelators, EA and EA derivatives are drawing an increasing interest towards extensive technical and biomedical applications. The latter ones include possible antibacterial, antifungal, antiviral, anti-inflammatory, hepato- and cardioprotective, chemopreventive, neuroprotective, anti-diabetic, gastroprotective, antihyperlipidemic, and antidepressant-like activities, among others. EA’s synthesis and production challenges prompt further research on new methods and alternative sources. Conventional and prospective methods and raw materials for the production of EA and its derivatives are reviewed. Among the potential sources of EA, the residues and industrial streams of the pulp industry have been highlighted and considered as an alluring alternative in terms of commercial exploitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.