Objective
Increasing evidence suggests that chronic inflammation contributes to atherogenesis, and that acute inflammatory events cause plaque rupture, thrombosis, and myocardial infarction. The present studies examined how inflammatory factors, such as interferon-γ (IFNγ), cause increased sensitivity to apoptosis in vascular lesion cells.
Methods and Results
Cells from the fibrous cap of human atherosclerotic lesions were sensitized by interferon-γ (IFNγ) to Fas-induced apoptosis, in a Bcl-XL reversible manner. Microarray profiling identified 72 INFγ-induced transcripts with potential relevance to apoptosis. Half could be excluded because they were induced by IRF-1 overexpression, which did not sensitize to apoptosis. IFNγ treatment strongly reduced Mcl-1, phospho-Bcl-2 (ser70), and phospho-Bcl-XL (ser62) protein levels. Candidate transcripts were modulated by siRNA, overexpression, or inhibitors to assess the effect on IFNγ-induced Fas sensitivity. Surprisingly, siRNA knockdown of PSMB8 (LMP7), an ‘immunoproteasome’ component, reversed IFNγ-induced sensitivity to Fas ligation and prevented Fas/IFNγ-induced degradation of Mcl-1, but did not protect p-Bcl-2 or p-Bcl-XL. Proteasome inhibition markedly increased Mcl-1, p-Bcl-2, and p-Bcl-XL levels after IFNγ treatment.
Conclusions
While critical for antigen presentation, the immunoproteasome appears to be a key link between inflammatory factors and the control of vascular cell apoptosis, and thus may be an important factor in plaque rupture and myocardial infarction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.