This paper presents several definitions of "optimal patterns" in triadic data and results of experimental comparison of five triclustering algorithms on real-world and synthetic datasets. The evaluation is carried over such criteria as resource efficiency, noise tolerance and quality scores involving cardinality, density, coverage, and diversity of the patterns. An ideal triadic pattern is a totally dense maximal cuboid (formal triconcept). Relaxations of this notion under consideration are: OAC-triclusters; triclusters optimal with respect to the leastsquare criterion; and graph partitions obtained by using spectral clustering. We show that searching for an optimal tricluster cover is an NP-complete problem, whereas determining the number of such covers is #P-complete. Our extensive computational experiments lead us to a clear strategy for choosing a solution at a given dataset guided by the principle of Pareto-optimality according to the proposed criteria.
The advancement on explainability techniques is quite relevant in the field of Reinforcement Learning (RL) and its applications can be beneficial for the development of intelligent agents that are understandable by humans and are able cooperate with them. When dealing with Deep RL some approaches already exist in the literature, but a common problem is that it can be tricky to define whether the explanations generated for an agent really reflect the behaviour of the trained agent. In this work we will apply an approach for explainability based on the creation of a Policy Graph (PG) that represents the agent’s behaviour. Our main contribution is a way to measure the similarity between the explanations and the agent’s behaviour, by building another agent that follows a policy based on the explainability method and comparing the behaviour of both agents.
As the popularity of the field of big data continues to rise, the problem of the development of effi cient algorithms with low time complexity and that ability to be parallelized is more and more frequently posed. This work is aimed at the development of an efficient single pass algorithm for the triclustering of binary data that is suitable for use in the field of big data. As a result, a single pass serial online OAC triclus tering algorithm (triclustering of object-attribute-condition) was obtained. This algorithm not only has a very low complexity in time and memory, but it also can be effectively parallelized.
Multimodal clustering is an unsupervised technique for mining interesting patterns in n-adic binary relations or n-mode networks. Among different types of such generalized patterns one can find biclusters and formal concepts (maximal bicliques) for 2-mode case, triclusters and triconcepts for 3-mode case, closed nsets for n-mode case, etc. Object-attribute biclustering (OA-biclustering) for mining large binary datatables (formal contexts or 2-mode networks) arose by the end of the last decade due to intractability of computation problems related to formal concepts; this type of patterns was proposed as a meaningful and scalable approximation of formal concepts. In this paper, our aim is to present recent advance in OAbiclustering and its extensions to mining multi-mode communities in SNA setting. We also discuss connection between clustering coefficients known in SNA community for 1-mode and 2-mode networks and OA-bicluster density, the main quality measure of an OA-bicluster. Our experiments with 2-, 3-, and 4-mode large realworld networks show that this type of patterns is suitable for community detection in multi-mode cases within reasonable time even though the number of corresponding n-cliques is still unknown due to computation difficulties. An interpretation of OA-biclusters for 1-mode networks is provided as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.