In the last three decades, we have witnessed incredible advances in laser technology and in the understanding of nonlinear laser-matter interactions, crowned recently by the award of the Nobel prize to Gérard Mourou and Donna Strickland [1,2]. It is now routinely possible to produce few-cycle femtosecond (1 fs = 10 −15 s) laser pulses in the visible and mid-infrared regimes [3,4]. By focusing such ultrashort laser pulses on gas or solid targets, possibly in a presence of nano-structures [5], the targets are subjected to an ultra-intense electric field, with peak field strengths approaching the binding field inside the atoms themselves. Such fields permit the exploration of the interaction between strong electromagnetic coherent radiation and an atomic or molecular system with unprecedented spatial and temporal resolution [6]. On one hand, HHG nowadays can be used to generate attosecond pulses in the extreme ultraviolet [7,8], or even in the soft X-ray regime [9]. Such pulses themselves may be used for dynamical spectroscopy of matter; despite carrying modest pulse energies, they exhibit excellent coherence properties [10,11]. Combined with femtosecond pulses they can also be used to extract information about the laser pulse electric field itself [12]. HHG sources therefore offer an important alternative to other sources of XUV and X-ray radiation: synchrotrons, free electron lasers, X-ray lasers, and laser plasma sources. Moreover, HHG pulses can provide information about the structure of the target atom, molecule or solid [13][14][15]. Of course, to decode such information from a highly nonlinear HHG signal is a challenge, and that is why a possibly perfect, and possibly "as analytical as possible" theoretical understanding of these processes is in high demand. Here is the first instance where SFA offers its basic services.Since electronic motion is governed by the waveform of the laser electric field, an important quantity to describe the electric field shape is the so-called absolute phase or carrier-envelope phase (CEP). Control over the CEP is paramount for extracting information about electron dynamics, and to retrieve structural information from atoms and molecules [13,16,17]. For instance, in HHG an electron is liberated from an atom or molecule through ionization, which occurs close to the maximum of the electric field. Within the oscillating field, the electron can thus accelerate along oscillating trajectories, which may result in recollision with the parent ion, roughly when the laser field approaches a zero value. Control over the CEP is particularly important for HHG, when targets are driven by laser pulses comprising only one or two optical cycles. In that situation the CEP determines the relevant electron trajectories, i.e. the CEP determines whether emission results in a single or in multiple attosecond bursts of radiation [16,18].The influence of the CEP on electron emission is also extremely important. It was demonstrated for instance in an anti-correlation experiment, in which the number of AT...
We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d , n i , of both atoms. While for symmetric atom pairs with = = n n n d i 0 the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive-for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantummechanical effect, which points towards existence of optimal (we call them 'Tom' and 'Jerry' for 'big' and 'small') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with > > n n n i d 0 which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0 . We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate.
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983)] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency S . We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3p 3/2 and 4d 5/2 states by the strong laser field and probed by a weak laser field on the 3s 1/2 − 3p 3/2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states-states that change their appearance in the AT spectrum, behaving as bright states at small to moderate S , and fading from the spectrum similarly to dark states when S is much larger than the HF splitting of the 3p 3/2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of S and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.