The Share-a-Ride Problem (SARP) aims at maximizing the profit of serving a set of passengers and parcels using a set of homogeneous vehicles. We propose an adaptive large neighborhood search (ALNS) heuristic to address the SARP. Furthermore, we study the problem of determining the time slack in a SARP schedule. Our proposed solution approach is tested on three sets of realistic instances. The performance of our heuristic is benchmarked against a mixed integer programming (MIP) solver and the Dial-a-Ride Problem (DARP) test instances. Compared to the MIP solver, our heuristic is superior in both the solution times and the quality of the obtained solutions if the CPU time is limited. We also report new best results for two out of twenty benchmark DARP instances.
Lately, the problem of cell formation (CF) has gained a lot of attention in the industrial engineering literature. Since it was formulated (more than 50 years ago), the problem has incorporated additional industrial factors and constraints while its solution methods have been constantly improving in terms of the solution quality and CPU times. However, despite all the efforts made, the available solution methods (including those for a popular model based on the p-median problem, PMP) are prone to two major types of errors. The first error (the modeling one) occurs when the intended objective function of the CF (as a rule, verbally formulated) is substituted by the objective function of the PMP. The second error (the algorithmic one) occurs as a direct result of applying a heuristic for solving the PMP. In this paper we show that for instances that make sense in practice, the modeling error induced by the PMP is negligible. We exclude the algorithmic error completely by solving the adjusted pseudo-Boolean formulation of the PMP exactly, which takes less than one second on a general-purpose PC and software. Our experimental study shows that the PMP-based model produces high-quality cells and in most cases outperforms several contemporary approaches. Subject classifications: cell formation; p-median problem; pseudo-Boolean polynomial; group technology. Area of review: Optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.