The proteins of the Ly6 family have a three-finger folding as snake venom α-neurotoxins, targeting nicotinic acetylcholine receptors (nAChRs), and some of them, like mammalian secreted Ly6/uPAR protein (SLURP1) and membrane-attached Ly-6/neurotoxin (Lynx1), also interact with distinct nAChR subtypes. We believed that synthetic fragments of these endogenous proteins might open new ways for drug design because nAChRs are well-known targets for developing analgesics and drugs against neurodegenerative diseases. Since interaction with nAChRs was earlier shown for synthetic fragments of the α-neurotoxin central loop II, we synthesized a 15-membered fragment of human Lynx1, its form with two Cys residues added at the N- and C-termini and forming a disulfide, as well as similar forms of human SLURP1, SLURP2, and of Drosophila sleepless protein (SSS). The IC 50 values measured in competition with radioiodinated α-bungarotoxin for binding to the membrane-bound Torpedo californica nAChR were 4.9 and 7.4 µM for Lynx1 and SSS fragments, but over 300 µM for SLURP1 or SLURP2 fragments. The affinity of these compounds for the α7 nAChR in the rat pituitary tumor-derived cell line GH4C1 was different: 13.1 and 147 µM for SSS and Lynx1 fragments, respectively. In competition for the ligand-binding domain of the α9 nAChR subunit, SSS and Lynx1 fragments had IC 50 values of about 40 µM, which correlates with the value found for the latter with the rat α9α10 nAChR expressed in the Xenopus oocytes. Thus, the activity of these synthetic peptides against muscle-type and α9α10 nAChRs indicates that they may be useful in design of novel myorelaxants and analgesics.
Background: Up to 30–50% of chronic heart failure patients who underwent cardiac resynchronization therapy (CRT) do not respond to the treatment. Therefore, patient stratification for CRT and optimization of CRT device settings remain a challenge.Objective: The main goal of our study is to develop a predictive model of CRT outcome using a combination of clinical data recorded in patients before CRT and simulations of the response to biventricular (BiV) pacing in personalized computational models of the cardiac electrophysiology.Materials and Methods: Retrospective data from 57 patients who underwent CRT device implantation was utilized. Positive response to CRT was defined by a 10% increase in the left ventricular ejection fraction in a year after implantation. For each patient, an anatomical model of the heart and torso was reconstructed from MRI and CT images and tailored to ECG recorded in the participant. The models were used to compute ventricular activation time, ECG duration and electrical dyssynchrony indices during intrinsic rhythm and BiV pacing from the sites of implanted leads. For building a predictive model of CRT response, we used clinical data recorded before CRT device implantation together with model-derived biomarkers of ventricular excitation in the left bundle branch block mode of activation and under BiV stimulation. Several Machine Learning (ML) classifiers and feature selection algorithms were tested on the hybrid dataset, and the quality of predictors was assessed using the area under receiver operating curve (ROC AUC). The classifiers on the hybrid data were compared with ML models built on clinical data only.Results: The best ML classifier utilizing a hybrid set of clinical and model-driven data demonstrated ROC AUC of 0.82, an accuracy of 0.82, sensitivity of 0.85, and specificity of 0.78, improving quality over that of ML predictors built on clinical data from much larger datasets by more than 0.1. Distance from the LV pacing site to the post-infarction zone and ventricular activation characteristics under BiV pacing were shown as the most relevant model-driven features for CRT response classification.Conclusion: Our results suggest that combination of clinical and model-driven data increases the accuracy of classification models for CRT outcomes.
αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α–δ subunits. Three isoforms (αδ-BgTx-1–3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17–0.28 µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve–muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α–δ site as compared with α–ε or α–γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs.
α-Conotoxins from Conus snails are capable of distinguishing muscle and neuronal nicotinic acetylcholine receptors (nAChRs). α-Conotoxin RgIA and αO-conotoxin GeXIVA, blocking neuronal α9α10 nAChR, are potential analgesics. Typically, α-conotoxins bind to the orthosteric sites for agonists/competitive antagonists, but αO-conotoxin GeXIVA was proposed to attach allosterically, judging by electrophysiological experiments on α9α10 nAChR. We decided to verify this conclusion by radioligand analysis in competition with α-bungarotoxin (αBgt) on the ligand-binding domain of the nAChR α9 subunit (α9 LBD), where, from the X-ray analysis, αBgt binds at the orthosteric site. A competition with αBgt was registered for GeXIVA and RgIA, IC50 values being in the micromolar range. However, high nonspecific binding of conotoxins (detected with their radioiodinated derivatives) to His6-resin attaching α9 LBD did not allow us to accurately measure IC50s. However, IC50s were measured for binding to Aplysia californica AChBP: the RgIA globular isomer, known to be active against α9α10 nAChR, was more efficient than the ribbon one, whereas all three GeXIVA isomers had similar potencies at low µM. Thus, radioligand analysis indicated that both conotoxins can attach to the orthosteric sites in these nAChR models, which should be taken into account in the design of analgesics on the basis of these conotoxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.